Performance and Durability of Mn-Based Platinum Group-Metal Free Catalyst in Membrane Electrode Assemblies

催化作用 质子交换膜燃料电池 铂金 材料科学 膜电极组件 化学工程 耐久性 电极 电解质 无机化学 化学 复合材料 有机化学 工程类 物理化学 生物化学
作者
Fan Yang,Thomas Stracensky,Sichen Zhong,Mengjie Chen,Lin Guo,Yun Wang,Gang Wu,Guofeng Wang,Hui Xu
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (33): 2152-2152
标识
DOI:10.1149/ma2020-02332152mtgabs
摘要

Proton exchange membrane fuel cells (PEMFCs) have drawn increasing attention in automotive and residential applications. To significantly reduce the cost of the PEMFC stacks, current platinum-group metal (PGM) catalysts must be replaced by PGM-free catalysts. Although Fe-based PGM-free catalysts (Fe-N-C) have exhibited promisingly high activity for the oxygen reduction reaction (ORR) 1 , they suffer from insufficient stability. Additionally, a major issue associated with Fe-containing catalysts is that dissolved iron ions can facilitate Fenton’s reaction thus forming a strong radical known to degrade the ionomer and membrane 2 . Mn-based catalysts have recently been developed, aiming to improve the catalyst durability and mitigate the Fenton’s reaction 3 . However, the catalyst stability and integration into membrane electrode assemblies (MEAs) have yet to be studied. In this work, density function theory (DFT) has been applied to study the active sites and their degradation mechanism. Computational fluid dynamic (CFD) modeling was also applied to study water, oxygen and proton transport in the electrode. Electrode fabrication optimizations were conducted based on the guidance from the CFD results. The optimizations include ionomer content, electrode porosity and MEA fabrication approaches It has been found that Mn-based catalysts showed improved MEA durability compared to Fe-based catalysts due to the higher carbon graphitization degree, reduced de-metallization and mitigation of peroxide radical formation. However, there is still a significant performance degradation compared to PGM-based MEAs. X-ray absorption has been applied to examine the catalyst and corresponding MEAs before and after durability. The degradation is primarily attributed to the oxidation and agglomeration of active sites. Acknowledgement: The project is financially supported by the Department of Energy’s HFTO under the Grant DE-EE0008075. Reference : 1. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science, 332, 443, 2011. 2. F Coms, H Xu, T. McCallum, C. Mittelsteadt, ECS Trans . 64, 389, 2014. 3. Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis 2018, 1 (12), 935-945.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比伯的小杨完成签到,获得积分10
1秒前
桐桐应助东方有鱼名贤采纳,获得10
2秒前
Julia完成签到,获得积分10
2秒前
2秒前
YangLi发布了新的文献求助10
2秒前
2秒前
Liens完成签到,获得积分10
3秒前
guoli完成签到,获得积分10
4秒前
风中雨竹发布了新的文献求助10
4秒前
L乐完成签到,获得积分10
5秒前
Liens发布了新的文献求助10
6秒前
Jmuran完成签到 ,获得积分10
7秒前
YangLi完成签到,获得积分10
7秒前
len发布了新的文献求助10
7秒前
8秒前
爆米花应助光明磊落采纳,获得10
8秒前
隐形曼青应助马茹采纳,获得10
8秒前
笑点低钥匙完成签到,获得积分10
9秒前
无敌科研大王完成签到,获得积分10
9秒前
11秒前
香蕉觅云应助Yyyyy采纳,获得10
11秒前
12秒前
hhdong发布了新的文献求助10
12秒前
12秒前
共享精神应助翁家毅采纳,获得30
13秒前
李梦完成签到,获得积分20
13秒前
小白应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
yyzhou应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
玄风应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得100
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335