Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels

微流控 张力(地质) 收缩 材料科学 表面张力 细胞骨架 生物物理学 化学 生物医学工程 细胞 纳米技术 生物 物理 内分泌学 极限抗拉强度 医学 冶金 量子力学 生物化学
作者
Ke Wang,Yan Liu,Xiaohao Sun,Deyong Chen,Xinxia Cai,Junbo Wang,Jian Chen
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (6): 7260-7267 被引量:4
标识
DOI:10.1109/jsen.2020.3048591
摘要

This article presents a microfluidic system with multiple constriction channels in parallel capable of characterizing cortical tension of single cells in a continuous manner. Single cells are forced to travel through constriction channels (cross-sectional area smaller than single cells) in a quasi-static manner with front/rear membrane curves of deformed cells captured. Then the front/rear membrane curves are translated into cortical tension based on a home-developed mechanical model illustrating the relationship among cortical tension, cell deformation, aspiration pressure and geometrical parameters of constriction channels. Based on this microfluidic platform, cortical tension with sample sizes as large as thousands of single HL-60 cells were quantified for the first time where a variety of experimental conditions were used for comparison. Specifically, comparable values of cortical tension were obtained from both front and rear membrane portions of single cells while aspiration pressure rather than channel length can affect the quantified values of cortical tensions to an extent. As a demonstration, the microfluidic system was used to process HL-60 cells under a variety of cell treatments, producing higher cortical tension for the cells treated with paraformaldehyde for fixation and lower cortical tension for the cells treated with cytochalasin D for cytoskeleton compromise in comparison to wild-type counterparts. In summary, the developed microfluidic system can quantify cortical tension from single cells in a continuous fluid flow, which may function as an enabling tool in the field of single-cell analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yqcsyyds采纳,获得10
1秒前
jzpPLA完成签到,获得积分10
1秒前
phil完成签到,获得积分10
1秒前
领导范儿应助研友_842M4n采纳,获得10
3秒前
Chang完成签到,获得积分10
3秒前
Adam完成签到 ,获得积分10
3秒前
LWJ发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
缥缈的机器猫完成签到,获得积分10
7秒前
weidongwu完成签到,获得积分10
8秒前
爱吃西瓜的海獭完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
斯文败类应助冷静尔芙采纳,获得10
10秒前
19950220完成签到,获得积分10
10秒前
冷酷太清发布了新的文献求助10
11秒前
Hello应助苏格拉没有底采纳,获得10
12秒前
Chang发布了新的文献求助10
13秒前
Ode发布了新的文献求助10
14秒前
sd完成签到,获得积分10
14秒前
某某某发布了新的文献求助10
15秒前
允柠完成签到,获得积分10
16秒前
略略略发布了新的文献求助10
17秒前
想吃冰激凌么完成签到 ,获得积分20
17秒前
17秒前
18秒前
nako7575完成签到,获得积分10
19秒前
20秒前
20秒前
bkagyin应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得30
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
ZZQ完成签到,获得积分10
21秒前
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425