Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels

微流控 张力(地质) 收缩 材料科学 表面张力 细胞骨架 生物物理学 化学 生物医学工程 细胞 纳米技术 生物 物理 生物化学 量子力学 内分泌学 极限抗拉强度 医学 冶金
作者
Ke Wang,Yan Liu,Xiaohao Sun,Deyong Chen,Xinxia Cai,Junbo Wang,Jian Chen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 7260-7267 被引量:4
标识
DOI:10.1109/jsen.2020.3048591
摘要

This article presents a microfluidic system with multiple constriction channels in parallel capable of characterizing cortical tension of single cells in a continuous manner. Single cells are forced to travel through constriction channels (cross-sectional area smaller than single cells) in a quasi-static manner with front/rear membrane curves of deformed cells captured. Then the front/rear membrane curves are translated into cortical tension based on a home-developed mechanical model illustrating the relationship among cortical tension, cell deformation, aspiration pressure and geometrical parameters of constriction channels. Based on this microfluidic platform, cortical tension with sample sizes as large as thousands of single HL-60 cells were quantified for the first time where a variety of experimental conditions were used for comparison. Specifically, comparable values of cortical tension were obtained from both front and rear membrane portions of single cells while aspiration pressure rather than channel length can affect the quantified values of cortical tensions to an extent. As a demonstration, the microfluidic system was used to process HL-60 cells under a variety of cell treatments, producing higher cortical tension for the cells treated with paraformaldehyde for fixation and lower cortical tension for the cells treated with cytochalasin D for cytoskeleton compromise in comparison to wild-type counterparts. In summary, the developed microfluidic system can quantify cortical tension from single cells in a continuous fluid flow, which may function as an enabling tool in the field of single-cell analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默的芙发布了新的文献求助10
刚刚
霸气的怜珊完成签到,获得积分10
刚刚
1秒前
廖匪发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
带善人发布了新的文献求助10
1秒前
一米八发布了新的文献求助10
1秒前
Hello应助张若愚采纳,获得10
2秒前
烟花应助111wdy采纳,获得30
3秒前
HJJHJH发布了新的文献求助10
3秒前
4秒前
你滴臭宝发布了新的文献求助10
4秒前
4秒前
4秒前
Yuki发布了新的文献求助10
4秒前
Seven发布了新的文献求助30
4秒前
王嘉文发布了新的文献求助20
5秒前
焦一丹完成签到 ,获得积分10
5秒前
yy完成签到,获得积分10
5秒前
6秒前
6秒前
花花猪1989完成签到,获得积分10
7秒前
tinatian270完成签到,获得积分10
7秒前
大强完成签到,获得积分10
8秒前
8秒前
8秒前
顾矜应助某博采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
无限曼易关注了科研通微信公众号
10秒前
10秒前
mxczsl完成签到,获得积分10
10秒前
11秒前
彭于晏应助泡芙采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994