Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models

化学 蒸腾作用 污染 林可霉素 环境化学 色谱法 蒸腾流 园艺 生态学 生物化学 生物 光合作用 抗生素
作者
Majid Bagheri,Xiaolong He,Nadège Oustrière,Wenyan Liu,Honglan Shi,Matt A. Limmer,Joel G. Burken
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:751: 141418-141418 被引量:25
标识
DOI:10.1016/j.scitotenv.2020.141418
摘要

Uptake of seven organic contaminants including bisphenol A, estriol, 2,4-dinitrotoluene, N,N-diethyl-meta-toluamide (DEET), carbamazepine, acetaminophen, and lincomycin by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.) was measured. The plants were grown in a growth chamber under recommended conditions and dosed by these chemicals for 19 days. The plant samples (stem transpiration stream) and solution in the exposure media were taken to measure transpiration stream concentration factor (TSCF). The plant samples were analyzed by a freeze-thaw centrifugation technique followed by high performance liquid chromatography-tandem mass spectrometry detection. Measured average TSCF values were used to test a neural network (NN) model previously developed for predicting plant uptake based on physicochemical properties. The results indicated that moderately hydrophobic compounds including carbamazepine and lincomycin have average TSCF values of 0.43 and 0.79, respectively. The average uptake of DEET, estriol, acetaminophen, and bisphenol A was also measured as 0.34, 0.29, 0.22, and 0.1, respectively. The 2,4-dinitrotoluene was not detected in the stem transpiration stream and it was shown to degrade in the root zone. Based on these results together with plant physiology measurements, we concluded that physicochemical properties of the chemicals did predict uptake, however, the role of other factors should be considered in the prediction of TSCF. While NN model could predict TSCF based on physicochemical properties with acceptable accuracies (mean squared error less than 0.25), the results for 2,4-dinitrotoluene and other compounds confirm the needs for considering other parameters related to both chemicals (stability) and plant species (role of lipids, lignin, and cellulose).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shugefuhe完成签到,获得积分10
刚刚
研友_nV2ROn完成签到,获得积分10
2秒前
eric发布了新的文献求助10
2秒前
3秒前
lcy完成签到,获得积分10
3秒前
5秒前
KjLumos完成签到,获得积分20
6秒前
XIAOCHENZI完成签到,获得积分20
6秒前
7秒前
8秒前
Lee完成签到,获得积分10
8秒前
吃紫薯的鱼应助123采纳,获得10
8秒前
xuesensu完成签到 ,获得积分10
8秒前
刘璞发布了新的文献求助10
8秒前
9秒前
NexusExplorer应助浮云采纳,获得10
10秒前
顺心真完成签到,获得积分10
11秒前
Wt发布了新的文献求助10
12秒前
不安青牛应助无风采纳,获得20
12秒前
大胆的荆发布了新的文献求助10
13秒前
稳重的若雁完成签到,获得积分10
13秒前
默默的月光完成签到 ,获得积分10
13秒前
13秒前
小二郎应助zjkzh采纳,获得10
14秒前
14秒前
丘比特应助wd采纳,获得10
14秒前
15秒前
MrS完成签到,获得积分10
16秒前
17秒前
18秒前
大白发布了新的文献求助10
18秒前
科研通AI2S应助imomo999采纳,获得10
19秒前
gnyjm完成签到,获得积分10
19秒前
bukeshuo完成签到,获得积分10
20秒前
liusui发布了新的文献求助10
20秒前
与桉发布了新的文献求助10
20秒前
偷懒关注了科研通微信公众号
21秒前
橡皮泥大盗完成签到,获得积分10
22秒前
学术laji完成签到 ,获得积分10
22秒前
changl2023发布了新的文献求助10
22秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086818
求助须知:如何正确求助?哪些是违规求助? 2739530
关于积分的说明 7554815
捐赠科研通 2389162
什么是DOI,文献DOI怎么找? 1267013
科研通“疑难数据库(出版商)”最低求助积分说明 613616
版权声明 598592