Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models

化学 蒸腾作用 污染 林可霉素 环境化学 色谱法 蒸腾流 园艺 生态学 生物化学 生物 光合作用 抗生素
作者
Majid Bagheri,Xiaolong He,Nadège Oustrière,Wenyan Liu,Honglan Shi,Matt A. Limmer,Joel G. Burken
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:751: 141418-141418 被引量:25
标识
DOI:10.1016/j.scitotenv.2020.141418
摘要

Uptake of seven organic contaminants including bisphenol A, estriol, 2,4-dinitrotoluene, N,N-diethyl-meta-toluamide (DEET), carbamazepine, acetaminophen, and lincomycin by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.) was measured. The plants were grown in a growth chamber under recommended conditions and dosed by these chemicals for 19 days. The plant samples (stem transpiration stream) and solution in the exposure media were taken to measure transpiration stream concentration factor (TSCF). The plant samples were analyzed by a freeze-thaw centrifugation technique followed by high performance liquid chromatography-tandem mass spectrometry detection. Measured average TSCF values were used to test a neural network (NN) model previously developed for predicting plant uptake based on physicochemical properties. The results indicated that moderately hydrophobic compounds including carbamazepine and lincomycin have average TSCF values of 0.43 and 0.79, respectively. The average uptake of DEET, estriol, acetaminophen, and bisphenol A was also measured as 0.34, 0.29, 0.22, and 0.1, respectively. The 2,4-dinitrotoluene was not detected in the stem transpiration stream and it was shown to degrade in the root zone. Based on these results together with plant physiology measurements, we concluded that physicochemical properties of the chemicals did predict uptake, however, the role of other factors should be considered in the prediction of TSCF. While NN model could predict TSCF based on physicochemical properties with acceptable accuracies (mean squared error less than 0.25), the results for 2,4-dinitrotoluene and other compounds confirm the needs for considering other parameters related to both chemicals (stability) and plant species (role of lipids, lignin, and cellulose).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cyzhou发布了新的文献求助10
1秒前
1秒前
上上签完成签到,获得积分10
2秒前
FashionBoy应助葡萄爱吃荔枝采纳,获得10
2秒前
小钱钱完成签到,获得积分10
3秒前
3秒前
依沫发布了新的文献求助10
4秒前
思维隋发布了新的文献求助10
7秒前
清脆的又蓝完成签到,获得积分10
8秒前
FashionBoy应助一天吃瓜25h采纳,获得10
8秒前
nowfitness完成签到,获得积分10
11秒前
梓辰完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
依然灬聆听完成签到,获得积分10
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得30
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
WANGSONGLU发布了新的文献求助10
17秒前
斯文败类应助玉玉采纳,获得10
18秒前
ChatGPT发布了新的文献求助10
19秒前
打打应助Serein采纳,获得10
21秒前
22秒前
螺旋向上完成签到,获得积分10
22秒前
今后应助小吴同志采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182