Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models

化学 蒸腾作用 污染 林可霉素 环境化学 色谱法 蒸腾流 园艺 生态学 生物化学 光合作用 生物 抗生素
作者
Majid Bagheri,Xiaolong He,Nadège Oustrière,Wenyan Liu,Honglan Shi,Matt A. Limmer,Joel G. Burken
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:751: 141418-141418 被引量:25
标识
DOI:10.1016/j.scitotenv.2020.141418
摘要

Uptake of seven organic contaminants including bisphenol A, estriol, 2,4-dinitrotoluene, N,N-diethyl-meta-toluamide (DEET), carbamazepine, acetaminophen, and lincomycin by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.) was measured. The plants were grown in a growth chamber under recommended conditions and dosed by these chemicals for 19 days. The plant samples (stem transpiration stream) and solution in the exposure media were taken to measure transpiration stream concentration factor (TSCF). The plant samples were analyzed by a freeze-thaw centrifugation technique followed by high performance liquid chromatography-tandem mass spectrometry detection. Measured average TSCF values were used to test a neural network (NN) model previously developed for predicting plant uptake based on physicochemical properties. The results indicated that moderately hydrophobic compounds including carbamazepine and lincomycin have average TSCF values of 0.43 and 0.79, respectively. The average uptake of DEET, estriol, acetaminophen, and bisphenol A was also measured as 0.34, 0.29, 0.22, and 0.1, respectively. The 2,4-dinitrotoluene was not detected in the stem transpiration stream and it was shown to degrade in the root zone. Based on these results together with plant physiology measurements, we concluded that physicochemical properties of the chemicals did predict uptake, however, the role of other factors should be considered in the prediction of TSCF. While NN model could predict TSCF based on physicochemical properties with acceptable accuracies (mean squared error less than 0.25), the results for 2,4-dinitrotoluene and other compounds confirm the needs for considering other parameters related to both chemicals (stability) and plant species (role of lipids, lignin, and cellulose).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzzzzzj完成签到,获得积分10
1秒前
li完成签到,获得积分10
1秒前
追风少年完成签到,获得积分10
1秒前
三水发布了新的文献求助10
2秒前
谨慎晓灵完成签到 ,获得积分20
3秒前
chen完成签到,获得积分10
3秒前
4秒前
今后应助小水滴采纳,获得10
4秒前
lian完成签到,获得积分20
4秒前
沙漠水发布了新的文献求助10
6秒前
zxy完成签到,获得积分10
9秒前
10秒前
陈进发布了新的文献求助10
11秒前
11秒前
orixero应助安详的觅风采纳,获得10
13秒前
xdc发布了新的文献求助10
15秒前
小水滴发布了新的文献求助10
17秒前
17秒前
18秒前
Xu完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
22秒前
22秒前
今后应助volunteer采纳,获得10
23秒前
23秒前
小水滴完成签到,获得积分20
24秒前
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
ncjyl发布了新的文献求助10
25秒前
26秒前
伶俐乌完成签到 ,获得积分10
27秒前
在水一方应助研友_Z119gZ采纳,获得10
28秒前
科研通AI6应助答题不卡采纳,获得10
29秒前
韩擎宇发布了新的文献求助10
29秒前
jinghong发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917