亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Incentive Mechanism Design for Federated Machine Learning in Mobile Networks

计算机科学 激励 激励相容性 契约论 机构设计 杠杆(统计) 分布式计算 机器学习 人工智能 计算机安全 新古典经济学 经济 微观经济学
作者
Wei Yang Bryan Lim,Zehui Xiong,Chunyan Miao,Dusit Niyato,Qiang Yang,Cyril Leung,H. Vincent Poor
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (10): 9575-9588 被引量:177
标识
DOI:10.1109/jiot.2020.2985694
摘要

In recent years, the enhanced sensing and computation capabilities of Internet-of-Things (IoT) devices have opened the doors to several mobile crowdsensing applications. In mobile crowdsensing, a model owner announces a sensing task following which interested workers collect the required data. However, in some cases, a model owner may have insufficient data samples to build an effective machine learning model. To this end, we propose a federated learning (FL)-based privacy-preserving approach to facilitate collaborative machine learning among multiple model owners in mobile crowdsensing. Our system model allows collaborative machine learning without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in the contract theory under information asymmetry. For the latter, to ensure the stability of a federation through preventing free-riding attacks, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. Considering the inherent hierarchical structure of the involved entities, we propose a hierarchical incentive mechanism framework. Using the backward induction, we first solve the contract formulation and then proceed to solve the coalitional game with the merge and split algorithm. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design, in terms of incentive compatibility of our contract design and fair payoffs of model owners in stable federation formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助ping采纳,获得10
4秒前
yw完成签到,获得积分10
21秒前
38秒前
43秒前
ping发布了新的文献求助10
46秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
情怀应助科研通管家采纳,获得10
59秒前
情怀应助mashibeo采纳,获得10
1分钟前
2分钟前
2分钟前
发文发布了新的文献求助30
2分钟前
发文完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
dajiaozhuli发布了新的文献求助10
3分钟前
研友_Z1eDgZ完成签到,获得积分10
3分钟前
dajiaozhuli完成签到,获得积分20
3分钟前
3分钟前
胡可完成签到 ,获得积分10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
3分钟前
fatcat完成签到,获得积分10
3分钟前
3分钟前
4分钟前
hannah发布了新的文献求助10
4分钟前
4分钟前
lyfrey发布了新的文献求助10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
5分钟前
6分钟前
琪琪完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
zht完成签到,获得积分10
7分钟前
彭于晏应助ping采纳,获得10
7分钟前
7分钟前
8分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015724
关于积分的说明 8871668
捐赠科研通 2703410
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685177
邀请新用户注册赠送积分活动 679951