Hierarchical Incentive Mechanism Design for Federated Machine Learning in Mobile Networks

计算机科学 激励 激励相容性 契约论 机构设计 杠杆(统计) 分布式计算 机器学习 人工智能 计算机安全 新古典经济学 经济 微观经济学
作者
Wei Yang Bryan Lim,Zehui Xiong,Chunyan Miao,Dusit Niyato,Qiang Yang,Cyril Leung,H. Vincent Poor
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (10): 9575-9588 被引量:177
标识
DOI:10.1109/jiot.2020.2985694
摘要

In recent years, the enhanced sensing and computation capabilities of Internet-of-Things (IoT) devices have opened the doors to several mobile crowdsensing applications. In mobile crowdsensing, a model owner announces a sensing task following which interested workers collect the required data. However, in some cases, a model owner may have insufficient data samples to build an effective machine learning model. To this end, we propose a federated learning (FL)-based privacy-preserving approach to facilitate collaborative machine learning among multiple model owners in mobile crowdsensing. Our system model allows collaborative machine learning without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in the contract theory under information asymmetry. For the latter, to ensure the stability of a federation through preventing free-riding attacks, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. Considering the inherent hierarchical structure of the involved entities, we propose a hierarchical incentive mechanism framework. Using the backward induction, we first solve the contract formulation and then proceed to solve the coalitional game with the merge and split algorithm. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design, in terms of incentive compatibility of our contract design and fair payoffs of model owners in stable federation formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5321发布了新的文献求助10
4秒前
彭于晏应助Xin采纳,获得10
4秒前
7秒前
打打应助相信柯学采纳,获得10
8秒前
阳光的紊完成签到,获得积分10
9秒前
顾矜应助乐观沛白采纳,获得10
12秒前
12秒前
太阳花发布了新的文献求助10
13秒前
舍曲林发布了新的文献求助10
14秒前
SHAO应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
地表飞猪应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
ED应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得30
16秒前
星辰大海应助科研通管家采纳,获得30
17秒前
22秒前
lxp发布了新的文献求助30
26秒前
29秒前
大模型应助lxp采纳,获得10
32秒前
放倒巨大豆蔓完成签到 ,获得积分10
33秒前
牛文文发布了新的文献求助10
34秒前
ztl完成签到 ,获得积分10
37秒前
xkxkii发布了新的文献求助10
38秒前
lc发布了新的文献求助10
38秒前
Akim应助丹妮采纳,获得10
40秒前
李木子完成签到 ,获得积分10
43秒前
可爱的函函应助牛文文采纳,获得10
44秒前
48秒前
冷艳的道天完成签到 ,获得积分10
48秒前
50秒前
李健的小迷弟应助临澈采纳,获得10
50秒前
果酱的奥特曼完成签到,获得积分10
51秒前
隐形曼青应助岳凯采纳,获得10
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652