材料科学
电磁屏蔽
聚苯胺
涂层
复合材料
碳纳米管
导电体
电磁干扰
电磁干扰
纳米复合材料
基质(水族馆)
聚合物
聚合
计算机科学
电信
海洋学
地质学
作者
Lihua Zou,Chuntao Lan,Li Yang,Zhenzhen Xu,Changliu Chu,Yingcun Liu,Yiping Qiu
标识
DOI:10.1016/j.diamond.2020.107757
摘要
With the flourishing development of electronic technologies, high-performance electromagnetic interference (EMI) shielding textile-substrate materials are urgently needed to protect human beings as well as precision devices from EMI radiation. In this work, polyaniline (PANI) coated carbon nanotubes (CNTs) coating is deposited on a commercial fabric to achieve an exceptional EMI shielding performance. After the combination of CNTs and PANI by the in-situ polymerization of PANI on the surface of CNTs, a compact coating is obtained and thus forms a high-efficiency conductive network. The PANI coated CNT ([email protected]) nanowires are further confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. The sheet resistance of [email protected] coated fabric reaches as low as 20.1 ± 1.7 Ω/sq, a decline by one order of magnitude from both CNT coated and PANI coated fabric. The construction of efficient conductive network endows the [email protected] coated fabric an exceptional EMI SE of 23.0 dB, a dramatical increase from those of CNT coated and PANI coated fabric. Simultaneously, the CN[email protected] coated fabric exhibits a high absorption ratio of the incident electromagnetic energy (around 60%), indicating the coated fabric is eco-friendly with distinguished EMI shielding performance. Moreover, the obtained fabric possesses washing stabilities under various conditions, showing practicability of the shielding fabric. This work demonstrates the huge advantage for the structural optimization in the conductive coating for an efficient conductive network and high EMI shielding performance and provides a simple and convenient approach for the fabrication of new textile-substrate EMI shielding materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI