Adaptive Sedation Monitoring From EEG in ICU Patients With Online Learning

镇静 医学 镇静剂 脑电图 加药 异丙酚 重症监护医学 麻醉 急诊医学 内科学 精神科
作者
Wei‐Long Zheng,Haoqi Sun,Oluwaseun Akeju,M. Brandon Westover
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:67 (6): 1696-1706 被引量:6
标识
DOI:10.1109/tbme.2019.2943062
摘要

Sedative medications are routinely administered to provide comfort and facilitate clinical care in critically ill ICU patients. Prior work shows that brain monitoring using electroencephalography (EEG) to track sedation levels may help medical personnel to optimize drug dosing and avoid the adverse effects of oversedation and undersedation. However, the performance of sedation monitoring methods proposed to date deal poorly with individual variability across patients, leading to inconsistent performance. To address this challenge we develop an online learning approach based on Adaptive Regularization of Weight Vectors (AROW). Our approach adaptively updates a sedation level prediction algorithm under a continuously evolving data distribution. The prediction model is gradually calibrated for individual patients in response to EEG observations and routine clinical assessments over time. The evaluations are performed on a population of 172 sedated ICU patients whose sedation levels were assessed using the Richmond Agitation-Sedation Scale (scores between -5 = comatose and 0 = awake). The proposed adaptive model achieves better performance than the same model without adaptation (average accuracies with tolerance of one level difference: 68.76% vs. 61.10%). Moreover, our approach is shown to be robust to sudden changes caused by label noise. Medication administrations have different effects on model performance. We find that the model performs best in patients receiving only propofol, compared to patients receiving no sedation or multiple simultaneous sedative medications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是小程啊完成签到 ,获得积分10
刚刚
琪琪扬扬完成签到,获得积分10
1秒前
11111完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
fatal完成签到,获得积分10
4秒前
过分动真发布了新的文献求助20
4秒前
高贵的夜南完成签到,获得积分10
4秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
4秒前
5秒前
尺素寸心发布了新的文献求助10
6秒前
orixero应助BOSLobster采纳,获得10
7秒前
orixero应助yatou5651采纳,获得10
8秒前
在水一方应助卡卡采纳,获得10
8秒前
追寻羿完成签到 ,获得积分10
9秒前
hhzz发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
12秒前
科研通AI2S应助好玩和有趣采纳,获得10
12秒前
美丽跳跳糖完成签到,获得积分20
12秒前
12秒前
丘比特应助llll采纳,获得10
13秒前
13秒前
迟大猫应助su采纳,获得10
13秒前
发嗲的戎完成签到 ,获得积分10
14秒前
14秒前
内向凌兰完成签到,获得积分10
14秒前
14秒前
zhappy完成签到,获得积分10
15秒前
satchzhao发布了新的文献求助10
15秒前
友好的妍完成签到 ,获得积分10
16秒前
香山叶正红完成签到 ,获得积分10
17秒前
TOM发布了新的文献求助10
17秒前
沙耶酱完成签到,获得积分10
17秒前
赢赢发布了新的文献求助10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808