SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks—Optimization, Opportunities and Limits

计算机科学 合成孔径雷达 图像翻译 人工智能 初始化 翻译(生物学) 计算机视觉 遥感 图像(数学) 生物化学 化学 信使核糖核酸 基因 程序设计语言 地质学
作者
Mario Fuentes Reyes,Stefan Auer,Nina Merkle,Corentin Henry,Michael Schmitt
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (17): 2067-2067 被引量:115
标识
DOI:10.3390/rs11172067
摘要

Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an important role in Earth observation. The ability to interpret the data is limited, even for experts, as the human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected in the radar spectrum as well as image characteristics related to speckle or steps of post-processing. This paper is concerned with machine learning for SAR-to-optical image-to-image translation in order to support the interpretation and analysis of original data. A conditional adversarial network is adopted and optimized in order to generate alternative SAR image representations based on the combination of SAR images (starting point) and optical images (reference) for training. Following this strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results on follow-up applications, and the discussion of opportunities/drawbacks related to this application of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical: ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image representation are evaluated based on feedback from experts in SAR remote sensing and the impact on road extraction as an example for follow-up applications. The results provide the basis to explain fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits from alternative SAR image representations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
目土土完成签到 ,获得积分10
2秒前
海盐气泡水完成签到,获得积分10
3秒前
4秒前
十二十三完成签到 ,获得积分10
4秒前
5秒前
火星完成签到,获得积分20
5秒前
5秒前
7秒前
蓝天发布了新的文献求助10
10秒前
柔弱白羊发布了新的文献求助10
11秒前
Rosie发布了新的文献求助10
11秒前
12秒前
万能图书馆应助陈帅采纳,获得10
12秒前
赘婿应助lhy采纳,获得10
12秒前
长安心动明月完成签到 ,获得积分10
13秒前
Jared应助michael采纳,获得10
14秒前
roy完成签到,获得积分10
14秒前
14秒前
东郭迎松发布了新的文献求助10
15秒前
YYY发布了新的文献求助10
16秒前
苹果有毒完成签到,获得积分10
16秒前
17秒前
隋阳完成签到 ,获得积分10
18秒前
等待完成签到 ,获得积分10
20秒前
21秒前
21秒前
梦茵发布了新的文献求助10
22秒前
22秒前
Criminology34应助从容的尔云采纳,获得10
23秒前
李爱国应助伟大毕业旅程采纳,获得10
23秒前
23秒前
23秒前
健忘海露完成签到,获得积分20
24秒前
lhy发布了新的文献求助10
24秒前
SKSK完成签到,获得积分10
26秒前
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
火星发布了新的文献求助10
27秒前
vv123456ha发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812