SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks—Optimization, Opportunities and Limits

计算机科学 合成孔径雷达 图像翻译 人工智能 初始化 翻译(生物学) 计算机视觉 遥感 图像(数学) 生物化学 化学 信使核糖核酸 基因 程序设计语言 地质学
作者
Mario Fuentes Reyes,Stefan Auer,Nina Merkle,Corentin Henry,Michael Schmitt
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (17): 2067-2067 被引量:115
标识
DOI:10.3390/rs11172067
摘要

Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an important role in Earth observation. The ability to interpret the data is limited, even for experts, as the human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected in the radar spectrum as well as image characteristics related to speckle or steps of post-processing. This paper is concerned with machine learning for SAR-to-optical image-to-image translation in order to support the interpretation and analysis of original data. A conditional adversarial network is adopted and optimized in order to generate alternative SAR image representations based on the combination of SAR images (starting point) and optical images (reference) for training. Following this strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results on follow-up applications, and the discussion of opportunities/drawbacks related to this application of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical: ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image representation are evaluated based on feedback from experts in SAR remote sensing and the impact on road extraction as an example for follow-up applications. The results provide the basis to explain fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits from alternative SAR image representations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzjl发布了新的文献求助10
1秒前
Kang完成签到,获得积分10
1秒前
2秒前
枫叶完成签到 ,获得积分10
2秒前
3秒前
黄文燕完成签到 ,获得积分20
3秒前
zhangling完成签到,获得积分10
3秒前
栗子鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
思源应助lily采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
顺心飞雪完成签到,获得积分10
7秒前
华仔应助facaihua采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
djiwisksk66应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
打打应助栗子鱼采纳,获得10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126