Application of mutation operators to salp swarm algorithm

群体行为 算法 群体智能 操作员(生物学) 粒子群优化 萤火虫算法 遗传算法 突变 水准点(测量) 进化算法
作者
Rohit Salgotra,Urvinder Singh,Gurdeep Singh,Supreet Singh,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:169: 114368- 被引量:5
标识
DOI:10.1016/j.eswa.2020.114368
摘要

Abstract Salp swarm algorithm (SSA) based on the swarming behaviour of salps found in ocean, is a very competitive algorithm and has proved its worth as an excellent problem optimizer. Though SSA is a very challenging algorithm but it suffers from the problem of poor exploitation, local optima stagnation and unbalanced exploration and exploitation operations. Thus in order to mitigate these problems and improve the working properties, seven new versions of SSA are proposed in present work. All the new versions employ new set of mutation properties along with some common properties. The common properties of all the algorithms include division of generations, adaptive switching and adaptive population strategy. Overall, the proposed algorithms are self-adaptive in nature along with some added mutation properties. For performance evaluation, the proposed algorithms are subjected to variable initial population and dimension sizes. The best among the proposed is then tested on CEC 2005, CEC 2015 benchmark problems and real world problems from CEC 2011 benchmarks. Experimental and statistical results show that the proposed mutation clock SSA (MSSA) is best among all the algorithms under comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助ZZ采纳,获得30
刚刚
orixero应助阔达的太阳采纳,获得10
1秒前
1秒前
风清扬完成签到,获得积分10
1秒前
笑一笑发布了新的文献求助10
1秒前
Auditor完成签到 ,获得积分10
1秒前
3秒前
奥拉同学完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI2S应助垃圾筐采纳,获得10
4秒前
CC来一份升级完成签到,获得积分20
4秒前
Yifann完成签到,获得积分10
4秒前
Yuan完成签到,获得积分10
5秒前
稳重的手机完成签到,获得积分10
6秒前
世隐完成签到,获得积分10
6秒前
解之完成签到,获得积分20
7秒前
7秒前
合适台灯发布了新的文献求助10
7秒前
7秒前
8秒前
shufessm完成签到,获得积分0
8秒前
CipherSage应助LSM采纳,获得10
8秒前
Coco完成签到,获得积分10
8秒前
9秒前
散装洋芋完成签到 ,获得积分10
9秒前
华仔应助LXiao采纳,获得10
9秒前
无语发布了新的文献求助20
10秒前
温柔宛儿发布了新的文献求助10
11秒前
冷酷的风华完成签到,获得积分10
11秒前
小马甲应助稳重的手机采纳,获得10
11秒前
12秒前
12秒前
笑对人生关注了科研通微信公众号
12秒前
柳crystal完成签到,获得积分10
12秒前
12秒前
蛋挞发布了新的文献求助10
12秒前
13秒前
14秒前
yucj发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813