Application of mutation operators to salp swarm algorithm

群体行为 算法 群体智能 操作员(生物学) 粒子群优化 萤火虫算法 遗传算法 突变 水准点(测量) 进化算法
作者
Rohit Salgotra,Urvinder Singh,Gurdeep Singh,Supreet Singh,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:169: 114368- 被引量:5
标识
DOI:10.1016/j.eswa.2020.114368
摘要

Abstract Salp swarm algorithm (SSA) based on the swarming behaviour of salps found in ocean, is a very competitive algorithm and has proved its worth as an excellent problem optimizer. Though SSA is a very challenging algorithm but it suffers from the problem of poor exploitation, local optima stagnation and unbalanced exploration and exploitation operations. Thus in order to mitigate these problems and improve the working properties, seven new versions of SSA are proposed in present work. All the new versions employ new set of mutation properties along with some common properties. The common properties of all the algorithms include division of generations, adaptive switching and adaptive population strategy. Overall, the proposed algorithms are self-adaptive in nature along with some added mutation properties. For performance evaluation, the proposed algorithms are subjected to variable initial population and dimension sizes. The best among the proposed is then tested on CEC 2005, CEC 2015 benchmark problems and real world problems from CEC 2011 benchmarks. Experimental and statistical results show that the proposed mutation clock SSA (MSSA) is best among all the algorithms under comparison.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助喵喵采纳,获得10
1秒前
胡慧婷完成签到 ,获得积分10
1秒前
李健的小迷弟应助喵喵采纳,获得10
1秒前
完美世界应助喵喵采纳,获得10
1秒前
脑洞疼应助喵喵采纳,获得10
1秒前
嫁接诺贝尔应助喵喵采纳,获得10
1秒前
科研通AI6应助喵喵采纳,获得10
1秒前
小二郎应助喵喵采纳,获得10
1秒前
田様应助喵喵采纳,获得30
1秒前
Orange应助喵喵采纳,获得10
1秒前
丘比特应助喵喵采纳,获得10
1秒前
尘默完成签到,获得积分10
2秒前
2秒前
123发布了新的文献求助10
3秒前
4秒前
Zhuyin发布了新的文献求助30
4秒前
赘婿应助苛帅采纳,获得10
5秒前
研友_wZr5Rn完成签到,获得积分10
6秒前
6秒前
汉堡包应助zh1858f采纳,获得10
6秒前
扶桑发布了新的文献求助10
8秒前
ranj发布了新的文献求助10
8秒前
10秒前
X_X发布了新的文献求助10
10秒前
天天快乐应助小吉麻麻采纳,获得10
10秒前
10秒前
10秒前
lily发布了新的文献求助10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
orixero应助喵喵采纳,获得10
11秒前
搜集达人应助喵喵采纳,获得10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
天天快乐应助喵喵采纳,获得10
11秒前
Ava应助喵喵采纳,获得10
11秒前
桐桐应助喵喵采纳,获得10
11秒前
大模型应助喵喵采纳,获得10
11秒前
星辰大海应助喵喵采纳,获得10
11秒前
11秒前
宋温暖应助wuran采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367