Privacy-aware and Resource-saving Collaborative Learning for Healthcare in Cloud Computing

计算机科学 同态加密 云计算 加密 架空(工程) 服务器 信息隐私 医疗保健 协议(科学) 计算机安全 医学诊断 机器学习 人工智能 数据挖掘 计算机网络 医学 替代医学 病理 经济 经济增长 操作系统
作者
Meng Hao,Hongwei Li,Guowen Xu,Zhe Liu,Zongqi Chen
标识
DOI:10.1109/icc40277.2020.9148979
摘要

Electronic health records (EHR), generated in healthcare, contain extensive digital information, such as diagnoses, medications and complications. Recently, many studies have focused on constructing deep learning (DL) models with EHR data to improve the quality of healthcare services. However, in traditional centralized training, the collection of EHR causes serious privacy issues due to vulnerable transmission channels and untrusted DL service providers. An alternative that can mitigate the above privacy threat is federated learning (FL). It enables multiple healthcare institutions to learn a global predictive model by exchanging locally calculated updates without disclosing the private dataset. Unfortunately, the latest studies have shown that the local updates still expose sensitive information about the original training data. While several privacy-preserving FL protocols have been proposed, few prior works focused on energy consumption issues. Specifically, local training requires extensive computational resources, which is prohibitively expensive for resource-limited institutions. To overcome the above problems, we propose PRCL, a Privacy-aware and Resource-saving Collaborative Learning protocol. To reduce the local computational overhead, we design a novel model splitting method that partitions the neural network into three parts and outsources the computationally large middle part to cloud servers. By using the lightweight data perturbation and packed partially homomorphic encryption, PRCL protects the privacy of the original data and labels, as well as the parameters of the model. Moreover, we analyze the security of the proposed protocol, and demonstrate the superior performance of PRCL in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Damy完成签到,获得积分10
2秒前
酸奶发布了新的文献求助10
2秒前
清秀迎彤发布了新的文献求助10
2秒前
TAT完成签到 ,获得积分10
2秒前
王123发布了新的文献求助30
2秒前
hahaha完成签到,获得积分10
3秒前
louiselin完成签到,获得积分10
3秒前
4秒前
4秒前
andou发布了新的文献求助10
4秒前
Maomao发布了新的文献求助10
5秒前
asdfqwer应助ikea1984采纳,获得10
5秒前
5秒前
大角牛完成签到,获得积分10
6秒前
6秒前
7秒前
暮夕梧桐发布了新的文献求助10
8秒前
8秒前
8秒前
欣慰雪巧完成签到,获得积分10
9秒前
9秒前
han发布了新的文献求助10
9秒前
Ava应助格格磊磊采纳,获得10
10秒前
10秒前
yinhe028完成签到,获得积分10
10秒前
louiselin发布了新的文献求助10
11秒前
11秒前
cy发布了新的文献求助10
11秒前
陶醉的青烟完成签到 ,获得积分10
12秒前
12秒前
xujiayuan完成签到,获得积分10
13秒前
13秒前
Abdurrahman完成签到,获得积分10
13秒前
隐形曼青应助合欢采纳,获得10
13秒前
13秒前
薛凌云发布了新的文献求助10
13秒前
小小阿杰发布了新的文献求助10
14秒前
14秒前
烨无殇完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405125
求助须知:如何正确求助?哪些是违规求助? 4523421
关于积分的说明 14093529
捐赠科研通 4437096
什么是DOI,文献DOI怎么找? 2435492
邀请新用户注册赠送积分活动 1427695
关于科研通互助平台的介绍 1406012