Privacy-aware and Resource-saving Collaborative Learning for Healthcare in Cloud Computing

计算机科学 同态加密 云计算 加密 架空(工程) 服务器 信息隐私 医疗保健 协议(科学) 计算机安全 医学诊断 机器学习 人工智能 数据挖掘 计算机网络 医学 替代医学 病理 经济 经济增长 操作系统
作者
Meng Hao,Hongwei Li,Guowen Xu,Zhe Liu,Zongqi Chen
标识
DOI:10.1109/icc40277.2020.9148979
摘要

Electronic health records (EHR), generated in healthcare, contain extensive digital information, such as diagnoses, medications and complications. Recently, many studies have focused on constructing deep learning (DL) models with EHR data to improve the quality of healthcare services. However, in traditional centralized training, the collection of EHR causes serious privacy issues due to vulnerable transmission channels and untrusted DL service providers. An alternative that can mitigate the above privacy threat is federated learning (FL). It enables multiple healthcare institutions to learn a global predictive model by exchanging locally calculated updates without disclosing the private dataset. Unfortunately, the latest studies have shown that the local updates still expose sensitive information about the original training data. While several privacy-preserving FL protocols have been proposed, few prior works focused on energy consumption issues. Specifically, local training requires extensive computational resources, which is prohibitively expensive for resource-limited institutions. To overcome the above problems, we propose PRCL, a Privacy-aware and Resource-saving Collaborative Learning protocol. To reduce the local computational overhead, we design a novel model splitting method that partitions the neural network into three parts and outsources the computationally large middle part to cloud servers. By using the lightweight data perturbation and packed partially homomorphic encryption, PRCL protects the privacy of the original data and labels, as well as the parameters of the model. Moreover, we analyze the security of the proposed protocol, and demonstrate the superior performance of PRCL in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
液晶屏99完成签到,获得积分10
17秒前
kyt_vip完成签到,获得积分10
18秒前
laber完成签到,获得积分0
20秒前
zpmz完成签到 ,获得积分10
22秒前
谢陈完成签到 ,获得积分10
22秒前
神勇的天问完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
27秒前
木木杉完成签到 ,获得积分10
32秒前
36秒前
keke发布了新的文献求助10
42秒前
luokm完成签到,获得积分10
47秒前
qin完成签到 ,获得积分10
49秒前
yoyo完成签到 ,获得积分10
53秒前
sx666完成签到 ,获得积分10
55秒前
望远Arena发布了新的文献求助30
56秒前
GaCf完成签到,获得积分20
56秒前
端庄洪纲完成签到 ,获得积分10
57秒前
冷艳的又蓝完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
58秒前
淼淼之锋完成签到 ,获得积分10
1分钟前
Akim应助qausyh采纳,获得10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
矜持完成签到 ,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
粉鳍完成签到 ,获得积分10
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
cocofan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
我不是哪吒完成签到 ,获得积分10
1分钟前
qausyh完成签到,获得积分10
1分钟前
jhgfjkhgkjbjb完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
无心的星月完成签到 ,获得积分10
1分钟前
haqime完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612052
求助须知:如何正确求助?哪些是违规求助? 4696188
关于积分的说明 14890603
捐赠科研通 4731306
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473314