Privacy-aware and Resource-saving Collaborative Learning for Healthcare in Cloud Computing

计算机科学 同态加密 云计算 加密 架空(工程) 服务器 信息隐私 医疗保健 协议(科学) 计算机安全 医学诊断 机器学习 人工智能 数据挖掘 计算机网络 病理 操作系统 医学 经济 替代医学 经济增长
作者
Meng Hao,Hongwei Li,Guowen Xu,Zhe Liu,Zongqi Chen
标识
DOI:10.1109/icc40277.2020.9148979
摘要

Electronic health records (EHR), generated in healthcare, contain extensive digital information, such as diagnoses, medications and complications. Recently, many studies have focused on constructing deep learning (DL) models with EHR data to improve the quality of healthcare services. However, in traditional centralized training, the collection of EHR causes serious privacy issues due to vulnerable transmission channels and untrusted DL service providers. An alternative that can mitigate the above privacy threat is federated learning (FL). It enables multiple healthcare institutions to learn a global predictive model by exchanging locally calculated updates without disclosing the private dataset. Unfortunately, the latest studies have shown that the local updates still expose sensitive information about the original training data. While several privacy-preserving FL protocols have been proposed, few prior works focused on energy consumption issues. Specifically, local training requires extensive computational resources, which is prohibitively expensive for resource-limited institutions. To overcome the above problems, we propose PRCL, a Privacy-aware and Resource-saving Collaborative Learning protocol. To reduce the local computational overhead, we design a novel model splitting method that partitions the neural network into three parts and outsources the computationally large middle part to cloud servers. By using the lightweight data perturbation and packed partially homomorphic encryption, PRCL protects the privacy of the original data and labels, as well as the parameters of the model. Moreover, we analyze the security of the proposed protocol, and demonstrate the superior performance of PRCL in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助feedyoursoul采纳,获得30
刚刚
yyc发布了新的文献求助10
1秒前
vincez发布了新的文献求助10
3秒前
迷路无声发布了新的文献求助10
3秒前
5秒前
li发布了新的文献求助10
5秒前
5秒前
6秒前
dch完成签到,获得积分10
6秒前
Hello应助书羽采纳,获得10
6秒前
8秒前
8秒前
9秒前
9秒前
9秒前
人物让人发布了新的文献求助10
10秒前
10秒前
上官若男应助诚心一一采纳,获得10
11秒前
深情芷完成签到,获得积分10
11秒前
11秒前
共享精神应助赤侯采纳,获得10
11秒前
小叮当完成签到,获得积分10
12秒前
12秒前
13秒前
dch发布了新的文献求助10
14秒前
呆萌剑封发布了新的文献求助10
16秒前
18秒前
HY发布了新的文献求助10
18秒前
书羽发布了新的文献求助10
18秒前
平平小可爱完成签到,获得积分10
20秒前
Akim应助健壮冬卉采纳,获得10
20秒前
20秒前
21秒前
阿巴阿巴发布了新的文献求助10
21秒前
21秒前
哭泣仙人掌完成签到,获得积分10
22秒前
迅速凡旋发布了新的文献求助10
23秒前
刘柳完成签到 ,获得积分10
23秒前
爆米花应助秀丽的砖家采纳,获得10
23秒前
bkagyin应助人物让人采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599