Privacy-aware and Resource-saving Collaborative Learning for Healthcare in Cloud Computing

计算机科学 同态加密 云计算 加密 架空(工程) 服务器 信息隐私 医疗保健 协议(科学) 计算机安全 医学诊断 机器学习 人工智能 数据挖掘 计算机网络 病理 操作系统 医学 经济 替代医学 经济增长
作者
Meng Hao,Hongwei Li,Guowen Xu,Zhe Liu,Zongqi Chen
标识
DOI:10.1109/icc40277.2020.9148979
摘要

Electronic health records (EHR), generated in healthcare, contain extensive digital information, such as diagnoses, medications and complications. Recently, many studies have focused on constructing deep learning (DL) models with EHR data to improve the quality of healthcare services. However, in traditional centralized training, the collection of EHR causes serious privacy issues due to vulnerable transmission channels and untrusted DL service providers. An alternative that can mitigate the above privacy threat is federated learning (FL). It enables multiple healthcare institutions to learn a global predictive model by exchanging locally calculated updates without disclosing the private dataset. Unfortunately, the latest studies have shown that the local updates still expose sensitive information about the original training data. While several privacy-preserving FL protocols have been proposed, few prior works focused on energy consumption issues. Specifically, local training requires extensive computational resources, which is prohibitively expensive for resource-limited institutions. To overcome the above problems, we propose PRCL, a Privacy-aware and Resource-saving Collaborative Learning protocol. To reduce the local computational overhead, we design a novel model splitting method that partitions the neural network into three parts and outsources the computationally large middle part to cloud servers. By using the lightweight data perturbation and packed partially homomorphic encryption, PRCL protects the privacy of the original data and labels, as well as the parameters of the model. Moreover, we analyze the security of the proposed protocol, and demonstrate the superior performance of PRCL in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxy完成签到,获得积分10
1秒前
李李李完成签到 ,获得积分10
2秒前
小s发布了新的文献求助10
3秒前
感性的芹菜完成签到,获得积分10
4秒前
5秒前
Rain发布了新的文献求助10
6秒前
逃学打游戏完成签到,获得积分10
6秒前
啊爱普完成签到 ,获得积分10
7秒前
清脆剑封完成签到,获得积分20
7秒前
8秒前
小s完成签到,获得积分10
9秒前
auraro完成签到 ,获得积分10
10秒前
细嗅蔷薇完成签到,获得积分10
11秒前
13秒前
柳威发布了新的文献求助10
14秒前
Owen应助Vicky采纳,获得10
15秒前
徐恭关注了科研通微信公众号
16秒前
koukou发布了新的文献求助10
16秒前
隐形曼青应助MXiV采纳,获得10
20秒前
21秒前
宓函完成签到,获得积分10
21秒前
21秒前
yookia应助lewis17采纳,获得10
21秒前
24秒前
川川子发布了新的文献求助10
25秒前
石晶晶发布了新的文献求助10
25秒前
柯一一应助1234采纳,获得10
26秒前
Jro关闭了Jro文献求助
27秒前
Ivy完成签到,获得积分20
27秒前
Duxize发布了新的文献求助10
27秒前
熊猫小肿完成签到,获得积分10
27秒前
29秒前
一只耳完成签到,获得积分10
29秒前
lzzzzz完成签到,获得积分10
29秒前
hh10ve完成签到,获得积分10
30秒前
小蘑菇应助Ivy采纳,获得10
31秒前
32秒前
哈ha发布了新的文献求助10
32秒前
鱼香rose盖饭完成签到,获得积分10
32秒前
隐形曼青应助fffff采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673