Privacy-aware and Resource-saving Collaborative Learning for Healthcare in Cloud Computing

计算机科学 同态加密 云计算 加密 架空(工程) 服务器 信息隐私 医疗保健 协议(科学) 计算机安全 医学诊断 机器学习 人工智能 数据挖掘 计算机网络 医学 替代医学 病理 经济 经济增长 操作系统
作者
Meng Hao,Hongwei Li,Guowen Xu,Zhe Liu,Zongqi Chen
标识
DOI:10.1109/icc40277.2020.9148979
摘要

Electronic health records (EHR), generated in healthcare, contain extensive digital information, such as diagnoses, medications and complications. Recently, many studies have focused on constructing deep learning (DL) models with EHR data to improve the quality of healthcare services. However, in traditional centralized training, the collection of EHR causes serious privacy issues due to vulnerable transmission channels and untrusted DL service providers. An alternative that can mitigate the above privacy threat is federated learning (FL). It enables multiple healthcare institutions to learn a global predictive model by exchanging locally calculated updates without disclosing the private dataset. Unfortunately, the latest studies have shown that the local updates still expose sensitive information about the original training data. While several privacy-preserving FL protocols have been proposed, few prior works focused on energy consumption issues. Specifically, local training requires extensive computational resources, which is prohibitively expensive for resource-limited institutions. To overcome the above problems, we propose PRCL, a Privacy-aware and Resource-saving Collaborative Learning protocol. To reduce the local computational overhead, we design a novel model splitting method that partitions the neural network into three parts and outsources the computationally large middle part to cloud servers. By using the lightweight data perturbation and packed partially homomorphic encryption, PRCL protects the privacy of the original data and labels, as well as the parameters of the model. Moreover, we analyze the security of the proposed protocol, and demonstrate the superior performance of PRCL in terms of accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助慕洋采纳,获得10
1秒前
咸鱼想翻身完成签到,获得积分10
1秒前
鲤鱼鑫磊发布了新的文献求助10
1秒前
1秒前
kg关闭了kg文献求助
1秒前
2秒前
科研通AI6应助细心飞薇采纳,获得10
3秒前
云为晓发布了新的文献求助10
4秒前
4秒前
王博士发布了新的文献求助10
4秒前
大个应助net80yhm采纳,获得10
5秒前
羊小毛发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
Matt发布了新的文献求助10
6秒前
碧蓝世立发布了新的文献求助10
7秒前
du30发布了新的文献求助10
7秒前
hql完成签到 ,获得积分10
9秒前
忧郁的水仙花完成签到,获得积分10
9秒前
非凡梦发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
jiaojiao发布了新的文献求助10
12秒前
12秒前
黄黄发布了新的文献求助30
12秒前
Kecrin完成签到,获得积分10
12秒前
科研通AI2S应助Matt采纳,获得10
13秒前
沉静镜子发布了新的文献求助10
13秒前
大个应助云为晓采纳,获得10
14秒前
笨笨的完成签到,获得积分10
14秒前
s180500428发布了新的文献求助10
16秒前
qianZhang发布了新的文献求助10
16秒前
17秒前
17秒前
yy完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907