Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices

计算机科学 物联网 块链 信息隐私 计算机安全 计算机网络 密码学
作者
Yang Zhao,Jun Zhao,Linshan Jiang,Rui Tan,Dusit Niyato,Zengxiang Li,Lingjuan Lyu,Yingbo Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1817-1829 被引量:417
标识
DOI:10.1109/jiot.2020.3017377
摘要

Home appliance manufacturers strive to obtain feedback from users to improve their products and services to build a smart home system. To help manufacturers develop a smart home system, we design a federated learning (FL) system leveraging a reputation mechanism to assist home appliance manufacturers to train a machine learning model based on customers' data. Then, manufacturers can predict customers' requirements and consumption behaviors in the future. The working flow of the system includes two stages: in the first stage, customers train the initial model provided by the manufacturer using both the mobile phone and the mobile-edge computing (MEC) server. Customers collect data from various home appliances using phones, and then they download and train the initial model with their local data. After deriving local models, customers sign on their models and send them to the blockchain. In case customers or manufacturers are malicious, we use the blockchain to replace the centralized aggregator in the traditional FL system. Since records on the blockchain are untampered, malicious customers or manufacturers' activities are traceable. In the second stage, manufacturers select customers or organizations as miners for calculating the averaged model using received models from customers. By the end of the crowdsourcing task, one of the miners, who is selected as the temporary leader, uploads the model to the blockchain. To protect customers' privacy and improve the test accuracy, we enforce differential privacy (DP) on the extracted features and propose a new normalization technique. We experimentally demonstrate that our normalization technique outperforms batch normalization when features are under DP protection. In addition, to attract more customers to participate in the crowdsourcing FL task, we design an incentive mechanism to award participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
维尼完成签到,获得积分10
5秒前
5秒前
5秒前
纯牛奶完成签到,获得积分20
5秒前
Owen应助认真一斩采纳,获得10
5秒前
5秒前
5秒前
kannnliannn发布了新的文献求助10
5秒前
5秒前
7秒前
萧梦旋发布了新的文献求助10
7秒前
8秒前
纯牛奶发布了新的文献求助10
8秒前
可靠的映秋完成签到,获得积分10
9秒前
zzzkyt发布了新的文献求助10
9秒前
9秒前
www完成签到,获得积分10
10秒前
慢慢发布了新的文献求助10
10秒前
11秒前
呆呆发布了新的文献求助10
11秒前
英姑应助ACS副主编采纳,获得10
12秒前
李健应助君君采纳,获得10
12秒前
13秒前
13秒前
abc关闭了abc文献求助
14秒前
16秒前
17秒前
燕子应助青蛙公主采纳,获得10
17秒前
隐形曼青应助青蛙公主采纳,获得10
17秒前
科研小白发布了新的文献求助10
17秒前
18秒前
18秒前
所所应助sdx000126采纳,获得10
19秒前
20秒前
妮妮完成签到 ,获得积分10
21秒前
22秒前
传奇3应助七夏采纳,获得10
22秒前
天空发布了新的文献求助10
23秒前
苏震坤发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599