Low Predictability of Readmissions and Death Using Machine Learning in Cirrhosis

医学 接收机工作特性 逻辑回归 肝硬化 曲线下面积 肝病 内科学 队列 终末期肝病模型 曲线下面积 随机森林 机器学习 人工智能 肝移植 药代动力学 计算机科学 移植
作者
Chengpeng Hu,Vikram Anjur,Krishnakant Saboo,K. Rajender Reddy,Jacqueline G. O’Leary,Puneeta Tandon,Florence Wong,Guadalupe García‐Tsao,Patrick S. Kamath,Jennifer C. Lai,Scott W. Biggins,Michael B. Fallon,Paul J. Thuluvath,Ram Subramanian,Benedict Maliakkal,Hugo E. Vargas,Leroy R. Thacker,Ravishankar K. Iyer,Jasmohan S. Bajaj
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:116 (2): 336-346 被引量:16
标识
DOI:10.14309/ajg.0000000000000971
摘要

Readmission and death in cirrhosis are common, expensive, and difficult to predict. Our aim was to evaluate the abilities of multiple artificial intelligence (AI) techniques to predict clinical outcomes based on variables collected at admission, during hospitalization, and at discharge.We used the multicenter North American Consortium for the Study of End-Stage Liver Disease (NACSELD) cohort of cirrhotic inpatients who are followed up through 90-days postdischarge for readmission and death. We used statistical methods to select variables that are significant for readmission and death and trained 3 AI models, including logistic regression (LR), kernel support vector machine (SVM), and random forest classifiers (RFC), to predict readmission and death. We used the area under the receiver operating characteristic curve (AUC) from 10-fold crossvalidation for evaluation to compare sexes. Data were compared with model for end-stage liver disease (MELD) at discharge.We included 2,170 patients (57 ± 11 years, MELD 18 ± 7, 61% men, 79% White, and 8% Hispanic). The 30-day and 90-day readmission rates were 28% and 47%, respectively, and 13% died at 90 days. Prediction for 30-day readmission resulted in 0.60 AUC for all patients with RFC, 0.57 AUC with LR for women-only subpopulation, and 0.61 AUC with LR for men-only subpopulation. For 90-day readmission, the highest AUC was achieved with kernel SVM and RFC (AUC = 0.62). We observed higher predictive value when training models with only women (AUC = 0.68 LR) vs men (AUC = 0.62 kernel SVM). Prediction for death resulted in 0.67 AUC for all patients, 0.72 for women-only subpopulation, and 0.69 for men-only subpopulation, all with LR. MELD-Na model AUC was similar to those from the AI models.Despite using multiple AI techniques, it is difficult to predict 30- and 90-day readmissions and death in cirrhosis. AI model accuracies were equivalent to models generated using only MELD-Na scores. Additional biomarkers are needed to improve our predictive capability (See also the visual abstract at http://links.lww.com/AJG/B710).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
_xySH完成签到 ,获得积分10
1秒前
2秒前
qsh完成签到 ,获得积分10
2秒前
tylerconan完成签到 ,获得积分10
2秒前
犹豫嚣完成签到,获得积分20
3秒前
3秒前
孟石三完成签到,获得积分10
3秒前
天行健完成签到,获得积分10
3秒前
打打应助我要发论文采纳,获得10
3秒前
赘婿应助温柔而疏远采纳,获得10
3秒前
CDQ完成签到,获得积分10
4秒前
sunshine发布了新的文献求助20
4秒前
zhvjdb完成签到,获得积分20
5秒前
美女发布了新的文献求助10
5秒前
Sun完成签到,获得积分10
6秒前
爱lx完成签到,获得积分10
6秒前
Jarvis完成签到,获得积分10
6秒前
搜集达人应助细心的代天采纳,获得30
6秒前
6秒前
orixero应助知其荣采纳,获得10
7秒前
只想睡大觉完成签到,获得积分10
7秒前
包子发布了新的文献求助10
7秒前
huzi2009发布了新的文献求助10
7秒前
7秒前
hhllhh完成签到 ,获得积分10
8秒前
退役干饭王完成签到 ,获得积分20
8秒前
微笑的天薇完成签到,获得积分10
8秒前
9秒前
苏叶完成签到 ,获得积分10
9秒前
义气的羽毛完成签到,获得积分10
10秒前
施耐德完成签到,获得积分10
10秒前
荟菁完成签到,获得积分10
10秒前
Chris发布了新的文献求助10
10秒前
11秒前
12秒前
神勇的邑发布了新的文献求助10
12秒前
13秒前
Ning完成签到,获得积分10
13秒前
唐唐完成签到 ,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386