已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction

过电位 析氧 催化作用 金属有机骨架 材料科学 电化学 键裂 纳米笼 化学 化学工程 光化学 物理化学 电极 有机化学 工程类 吸附
作者
Qianqian Ji,Yuan Kong,Chao Wang,Hao Tan,Hengli Duan,Wei Hu,Guinan Li,Ying Lü,Na Li,Yao Wang,Jie Tian,Zeming Qi,Zhihu Sun,Fengchun Hu,Wensheng Yan
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:10 (10): 5691-5697 被引量:179
标识
DOI:10.1021/acscatal.0c00989
摘要

For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助yuanyuan采纳,获得10
2秒前
万能图书馆应助Jane采纳,获得10
3秒前
3秒前
5秒前
正行者1完成签到 ,获得积分10
5秒前
5秒前
9秒前
paul完成签到,获得积分10
9秒前
10秒前
小智完成签到 ,获得积分10
10秒前
12秒前
搜集达人应助tguczf采纳,获得10
13秒前
隐形曼青应助猜猜我是谁采纳,获得20
14秒前
14秒前
sleeping完成签到 ,获得积分10
15秒前
15秒前
Ava应助诸葛亮晶晶采纳,获得10
16秒前
白华苍松完成签到,获得积分10
17秒前
AAA问题批发商完成签到 ,获得积分10
17秒前
小不点发布了新的文献求助10
17秒前
Lucas应助一两二两三两斤采纳,获得10
19秒前
20秒前
科研通AI6应助大方的乐天采纳,获得10
23秒前
23秒前
26秒前
xuxingxing完成签到,获得积分10
26秒前
自由梦槐发布了新的文献求助10
28秒前
29秒前
彭于晏应助non平行线采纳,获得10
29秒前
SciGPT应助满意妙梦采纳,获得10
30秒前
32秒前
33秒前
诸葛亮晶晶完成签到,获得积分10
33秒前
34秒前
36秒前
36秒前
科研通AI6应助Hikx采纳,获得10
37秒前
37秒前
WLH完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685150
关于积分的说明 14837969
捐赠科研通 4668610
什么是DOI,文献DOI怎么找? 2538003
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784