A method for calculating the leaf inclination of soybean canopy based on 3D point clouds

点云 德劳内三角测量 多光谱图像 数学 点(几何) 遥感 天蓬 几何学 计算机科学 地质学 植物 人工智能 生物
作者
Zhichao Zhang,Xiaodan Ma,Haiou Guan,Kexin Zhu,Jiarui Feng,Song Yu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (15): 5719-5740 被引量:17
标识
DOI:10.1080/01431161.2021.1930271
摘要

In order to achieve high-efficiency, low-cost and non-destructive measurement of soybean leaf inclination, three soybean varieties (Fudou-6, Kangxian-9 and Kangxian-13) were taken as research objects, a calculation method of soybean leaf inclination based on 3D point clouds was proposed. First, the original 3D point cloud data of soybean plants were obtained by Kinect 2.0 depth camera. Second, the grid method, depth threshold filtering and statistical filtering were used to pre-process the original 3D point cloud data. Third, the k-means clustering algorithm was used to segment the leaf point clouds. Further, the Delaunay triangulation was applied in reconstructing the surface of discrete point clouds. Finally, the ratio of leaf area to projected area was obtained by calculating the area of triangular mesh, so as to realize the calculation of soybean leaf inclination. At the same time, the calculated values were compared with those obtained by multispectral three-dimensional laser scanning device. The average relative error of soybean leaf inclination was 3.21%. The coefficient of determination (R2) of the three varieties were 0.8317, 0.9075 and 0.9186, respectively. The results showed that the proposed method could meet the needs of non-destructive and accurate measurement of soybean leaf inclination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研路上的干饭桶完成签到,获得积分10
1秒前
所所应助YYJ25采纳,获得10
1秒前
传奇3应助ubiqutin采纳,获得10
2秒前
Wiggins完成签到,获得积分10
2秒前
adi完成签到,获得积分10
2秒前
小马甲应助猫了个喵采纳,获得10
2秒前
浮浮世世给浮浮世世的求助进行了留言
3秒前
海鸥海鸥发布了新的文献求助10
4秒前
田様应助稀罕你采纳,获得10
5秒前
汤浩宏发布了新的文献求助10
6秒前
天天完成签到 ,获得积分10
6秒前
ray发布了新的文献求助10
6秒前
Hello应助wang采纳,获得10
7秒前
qq完成签到 ,获得积分10
7秒前
Jasper应助zoloft采纳,获得10
7秒前
年华完成签到,获得积分10
7秒前
9秒前
充电宝应助伯赏诗霜采纳,获得50
11秒前
ubiqutin完成签到,获得积分10
12秒前
大模型应助Anquan采纳,获得30
12秒前
搜集达人应助饱满的紫伊采纳,获得30
13秒前
科研通AI5应助海鸥海鸥采纳,获得10
14秒前
ubiqutin发布了新的文献求助10
14秒前
15秒前
浮浮世世发布了新的文献求助50
15秒前
zoloft完成签到,获得积分10
17秒前
忆韵完成签到,获得积分10
17秒前
susu完成签到,获得积分20
19秒前
隐形曼青应助YYJ25采纳,获得10
20秒前
20秒前
zoloft发布了新的文献求助10
21秒前
yhc完成签到,获得积分10
21秒前
季生发布了新的文献求助60
22秒前
老孙完成签到,获得积分10
23秒前
24秒前
汤浩宏完成签到,获得积分10
27秒前
27秒前
yudandan@CJLU发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849