Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements

光子学 光子集成电路 光电子学 材料科学 联轴节(管道) 电子线路 硅光子学 耦合损耗 集成电路 炸薯条 可扩展性 计算机科学 光纤 电气工程 电信 工程类 数据库 冶金
作者
Yilin Xu,Pascal Maier,Matthias Blaicher,Philipp‐Immanuel Dietrich,Pablo Marin-Palomo,Wladislaw Hartmann,Yiyang Bao,Huanfa Peng,Muhammad Rodlin Billah,Stefan Singer,U. Troppenz,M. Moehrle,Sebastian Randel,W. Freude,C. Koos
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:31
标识
DOI:10.1038/s41598-021-95981-w
摘要

Abstract Combining semiconductor optical amplifiers (SOA) on direct-bandgap III–V substrates with low-loss silicon or silicon-nitride photonic integrated circuits (PIC) has been key to chip-scale external-cavity lasers (ECL) that offer wideband tunability along with small optical linewidths. However, fabrication of such devices still relies on technologically demanding monolithic integration of heterogeneous material systems or requires costly high-precision package-level assembly, often based on active alignment, to achieve low-loss coupling between the SOA and the external feedback circuits. In this paper, we demonstrate a novel class of hybrid ECL that overcome these limitations by exploiting 3D-printed photonic wire bonds as intra-cavity coupling elements. Photonic wire bonds can be written in-situ in a fully automated process with shapes adapted to the mode-field sizes and the positions of the chips at both ends, thereby providing low-loss coupling even in presence of limited placement accuracy. In a proof-of-concept experiment, we use an InP-based reflective SOA (RSOA) along with a silicon photonic external feedback circuit and demonstrate a single-mode tuning range from 1515 to 1565 nm along with side mode suppression ratios above 40 dB and intrinsic linewidths down to 105 kHz. Our approach combines the scalability advantages of monolithic integration with the performance and flexibility of hybrid multi-chip assemblies and may thus open a path towards integrated ECL on a wide variety of integration platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助小手冰凉采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
胡胡发布了新的文献求助10
4秒前
4秒前
ED应助科研通管家采纳,获得20
4秒前
fendy应助科研通管家采纳,获得80
4秒前
Orange应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
欣喜眼神完成签到,获得积分10
4秒前
4秒前
核桃发布了新的文献求助150
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
王大大应助科研通管家采纳,获得10
5秒前
One发布了新的文献求助10
5秒前
852应助科研通管家采纳,获得10
5秒前
充电宝应助duxh123采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
Henry完成签到,获得积分0
5秒前
5秒前
6秒前
隐形曼青应助贪玩的万仇采纳,获得10
6秒前
heyheybaby完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771