WaveICA 2.0: a novel batch effect removal method for untargeted metabolomics data without using batch information

计算机科学 代谢组学 批处理 数据挖掘 化学 色谱法 程序设计语言
作者
Kui Deng,Falin Zhao,Zhiwei Rong,Lei Cao,Liuchao Zhang,Kang Li,Yan Hou,Zheng‐Jiang Zhu
出处
期刊:Metabolomics [Springer Nature]
卷期号:17 (10) 被引量:12
标识
DOI:10.1007/s11306-021-01839-7
摘要

Untargeted metabolomics based on liquid chromatography-mass spectrometry is inevitably affected by batch effects that are caused by non-biological systematic bias. Previously, we developed a novel method called WaveICA to remove batch effects for untargeted metabolomics data. To detect batch effect information, the method relies on a batch label. However, it cannot be used in the scenario in which there is only one batch of data or the batch label is unknown. We aim to improve the WaveICA method to remove batch effects for untargeted metabolomics data without using batch information. We improved the WaveICA method by developing WaveICA 2.0 to remove batch effects for metabolomics data, and provided an R package WaveICA_2.0 to implement this method. The performance of the WaveICA 2.0 method was evaluated on real metabolomics data. For metabolomics data with three batches, the performance of the WaveICA 2.0 method was similar to that of the WaveICA method in terms of gathering quality control samples (QCSs) and subject samples together in principle component analysis score plots, increasing the similarity of QCSs, increasing differential peaks, and improving classification accuracy. For metabolomics data with only one batch, the WaveICA 2.0 method had a strong ability to remove intensity drift and reveal more biological information and outperformed the QC-RLSC and QC-SVRC methods in our study using our metabolomics data. Our results demonstrated that the WaveICA 2.0 method can be used in practice to remove batch effects for untargeted metabolomics data without batch information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
507发布了新的文献求助10
刚刚
李爱国应助陈啊炳采纳,获得10
1秒前
隐形曼青应助高高元柏采纳,获得10
1秒前
2秒前
3秒前
Junanne完成签到,获得积分10
3秒前
Singularity应助林强采纳,获得20
4秒前
angel完成签到,获得积分20
6秒前
有魅力荟发布了新的文献求助10
8秒前
8秒前
9秒前
胡图图完成签到,获得积分10
9秒前
脑洞疼应助Lin采纳,获得10
11秒前
刘敏小七完成签到,获得积分10
12秒前
13秒前
Miller完成签到,获得积分0
13秒前
14秒前
好事花生发布了新的文献求助10
15秒前
15秒前
wllllll发布了新的文献求助10
19秒前
好事花生完成签到,获得积分10
21秒前
李健应助吕zy采纳,获得10
23秒前
丁丁丁完成签到,获得积分10
24秒前
Ava应助有魅力荟采纳,获得10
25秒前
Aura完成签到,获得积分10
25秒前
25秒前
五六七完成签到 ,获得积分10
28秒前
竹筏过海应助楠小秾采纳,获得30
28秒前
CodeCraft应助tym采纳,获得10
28秒前
29秒前
ning完成签到,获得积分10
29秒前
科目三应助tian采纳,获得10
30秒前
30秒前
NancyDee完成签到,获得积分10
30秒前
笨笨完成签到,获得积分10
31秒前
追寻绮烟完成签到,获得积分10
32秒前
大模型应助di采纳,获得30
32秒前
Zzz完成签到 ,获得积分10
33秒前
斯文的橙子给斯文的橙子的求助进行了留言
33秒前
2331547774完成签到,获得积分20
35秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464150
求助须知:如何正确求助?哪些是违规求助? 3057458
关于积分的说明 9057265
捐赠科研通 2747504
什么是DOI,文献DOI怎么找? 1507379
科研通“疑难数据库(出版商)”最低求助积分说明 696507
邀请新用户注册赠送积分活动 696062