A two-stage embedding model for recommendation with multimodal auxiliary information

计算机科学 Softmax函数 嵌入 卷积神经网络 特征学习 杠杆(统计) 人工智能 二部图 情报检索 图形 模糊逻辑 数据挖掘 机器学习 理论计算机科学
作者
Ni Juan,Zhenhua Huang,Yang Hu,Chen Lin
出处
期刊:Information Sciences [Elsevier]
卷期号:582: 22-37 被引量:29
标识
DOI:10.1016/j.ins.2021.09.006
摘要

Recommender system has recently received a lot of attention in the information service community. In many application scenarios, such as Internet of Things (IoTs) environments, item multimodal auxiliary information (such as text and image) can be obtained to expand their feature representation and to increase user satisfaction with recommendations. Motivated by this fact, this paper introduces a novel two-stage embedding model (TSEM), which adequately leverage item multimodal auxiliary information to substantially improve recommendation performance. Specifically, it encompasses two sequential stages: graph convolutional embedding (GCE) and multimodal joint fuzzy embedding (MJFE). In the former, we first generate a bipartite graph for user-item interactions, and then utilize it to construct user and item backbone features via a spatial-based graph convolutional network (SGCN). While in the latter, by employing item multimodal auxiliary information, we integrate multi-task deep learning, deterministic Softmax, and fuzzy Softmax into a convolutional neural network (CNN)-based learning framework, which is optimized to obtain user backbone features and item semantic-enhanced fuzzy (SEF) features accurately. After TSEM converges, user backbone features and item SEF features can be utilized to calculate user preferences on items via Euclidean distance. Extensive experiments over two real-world datasets show that the proposed TSEM model significantly outperforms the state-of-the-art baselines in terms of various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱吃西瓜完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助大河_农经采纳,获得10
7秒前
苻青完成签到,获得积分10
7秒前
耍酷念柏完成签到,获得积分20
10秒前
重要问旋完成签到,获得积分10
10秒前
ouyang发布了新的文献求助10
10秒前
传奇3应助klll采纳,获得10
10秒前
11秒前
英俊的铭应助gxf采纳,获得10
12秒前
13秒前
15秒前
不配.应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
耍酷念柏发布了新的文献求助10
16秒前
顾矜应助orange9采纳,获得10
18秒前
MJY-112完成签到 ,获得积分10
18秒前
ShowMaker应助112233445566采纳,获得30
19秒前
19秒前
独孤九原发布了新的文献求助10
20秒前
24秒前
Vegetable_Dog发布了新的文献求助10
25秒前
26秒前
28秒前
nilu发布了新的文献求助10
28秒前
29秒前
汉堡包应助学渣本渣采纳,获得10
29秒前
wzq完成签到,获得积分10
29秒前
29秒前
29秒前
xkkk完成签到,获得积分10
31秒前
31秒前
31秒前
ZY完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464