The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease

机械生物学 机械转化 间充质干细胞 内皮 内皮功能障碍 细胞生物学 背景(考古学) 疾病 内皮干细胞 神经科学 平衡 医学 生物 体外 病理 心脏病学 内科学 古生物学 生物化学
作者
Shahrin Islam,Kristina I. Boström,Dino Di Carlo,Craig A. Simmons,Yin Tintut,Yucheng Yao,Jeffrey J. Hsu
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:12 被引量:28
标识
DOI:10.3389/fphys.2021.734215
摘要

Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUZU完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
pcx完成签到,获得积分10
2秒前
phd完成签到,获得积分10
3秒前
3秒前
曹志毅完成签到,获得积分10
3秒前
mito发布了新的文献求助10
4秒前
无悔呀发布了新的文献求助10
4秒前
5秒前
君君发布了新的文献求助10
5秒前
Yang完成签到,获得积分10
6秒前
风雨完成签到,获得积分10
6秒前
6秒前
7秒前
彭于晏应助小西采纳,获得30
7秒前
可爱的函函应助布布采纳,获得10
8秒前
9秒前
轩辕德地发布了新的文献求助10
9秒前
nine发布了新的文献求助30
9秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
10秒前
JamesPei应助小敦采纳,获得10
10秒前
今非发布了新的文献求助10
10秒前
李健的小迷弟应助通~采纳,获得30
10秒前
10秒前
10秒前
fanfan44390发布了新的文献求助10
10秒前
Zhang完成签到,获得积分10
11秒前
小二郎应助小田采纳,获得10
12秒前
12秒前
隐形曼青应助liike采纳,获得10
12秒前
phd发布了新的文献求助10
12秒前
12秒前
dingdong发布了新的文献求助30
12秒前
Orange应助清秀的语山采纳,获得50
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794