The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease

机械生物学 机械转化 间充质干细胞 内皮 内皮功能障碍 细胞生物学 背景(考古学) 疾病 内皮干细胞 神经科学 平衡 医学 生物 体外 病理 心脏病学 内科学 古生物学 生物化学
作者
Shahrin Islam,Kristina I. Boström,Dino Di Carlo,Craig A. Simmons,Yin Tintut,Yucheng Yao,Jeffrey J. Hsu
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:12 被引量:28
标识
DOI:10.3389/fphys.2021.734215
摘要

Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kn完成签到 ,获得积分10
刚刚
Liangstar发布了新的文献求助10
2秒前
2秒前
lee完成签到,获得积分20
2秒前
cc发布了新的文献求助10
2秒前
2秒前
15759869988完成签到 ,获得积分10
2秒前
3秒前
所所应助颖宝老公采纳,获得10
4秒前
4秒前
之鱼之乐发布了新的文献求助10
5秒前
小瓦片发布了新的文献求助10
6秒前
Yina完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
lee发布了新的文献求助10
7秒前
宋油油发布了新的文献求助30
7秒前
小彭发布了新的文献求助10
7秒前
蒋子龙完成签到,获得积分10
8秒前
赵酬海发布了新的文献求助10
8秒前
8秒前
Loooong完成签到,获得积分0
8秒前
Hosea发布了新的文献求助10
8秒前
打打应助yile采纳,获得10
9秒前
KKKKKkkk完成签到 ,获得积分10
9秒前
9秒前
10秒前
2420083884发布了新的文献求助10
10秒前
山南有木兮完成签到,获得积分20
11秒前
11秒前
star发布了新的文献求助10
12秒前
彬彬哥发布了新的文献求助10
12秒前
xs发布了新的文献求助10
12秒前
12秒前
13秒前
之鱼之乐完成签到,获得积分10
13秒前
13秒前
yanbosmu完成签到,获得积分10
14秒前
狗子完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038