已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An LSTM Network for Apnea and Hypopnea Episodes Detection in Respiratory Signals

多导睡眠图 呼吸不足 呼吸暂停 睡眠呼吸暂停 医学 呼吸 呼吸暂停-低通气指数 阻塞性睡眠呼吸暂停 计算机科学 人工智能 心脏病学 内科学 麻醉
作者
Jakub Drzazga,Bogusław Cyganek
出处
期刊:Sensors [MDPI AG]
卷期号:21 (17): 5858-5858 被引量:13
标识
DOI:10.3390/s21175858
摘要

One of the most common sleep disorders is sleep apnea. It manifests itself by episodes of shallow breathing or pauses in breathing during the night. Diagnosis of this disease involves polysomnography examination, which is expensive. Alternatively, diagnostic doctors can be supported with recordings from the in-home polygraphy sensors. Furthermore, numerous attempts for providing an automated apnea episodes annotation algorithm have been made. Most of them, however, do not distinguish between apnea and hypopnea episodes. In this work, a novel solution for epoch-based annotation problem is presented. Utilizing an architecture based on the long short-term memory (LSTM) networks, the proposed model provides locations of sleep disordered breathing episodes and identifies them as either apnea or hypopnea. To achieve this, special pre- and postprocessing steps have been designed. The obtained labels can be then used for calculation of the respiratory event index (REI), which serves as a disease severity indicator. The input for the model consists of the oronasal airflow along with the thoracic and abdominal respiratory effort signals. Performance of the proposed architecture was verified on the SHHS-1 and PhysioNet Sleep databases, obtaining mean REI classification error of 9.24/10.52 with standard deviation of 11.61/7.92 (SHHS-1/PhysioNet). Normal breathing, hypopnea and apnea differentiation accuracy is assessed on both databases, resulting in the correctly classified samples percentage of 86.42%/84.35%, 49.30%/58.28% and 68.20%/69.50% for normal breathing, hypopnea and apnea classes, respectively. Overall accuracies are 80.66%/82.04%. Additionally, the effect of wake periods is investigated. The results show that the proposed model can be successfully used for both episode classification and REI estimation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainbow完成签到 ,获得积分10
1秒前
李大刚完成签到 ,获得积分10
1秒前
英姑应助卷123采纳,获得10
2秒前
hjs完成签到,获得积分10
3秒前
共享精神应助江江酱采纳,获得10
3秒前
fighting完成签到,获得积分10
5秒前
科研通AI40应助ydj采纳,获得30
6秒前
自然完成签到,获得积分10
6秒前
席江海完成签到,获得积分10
6秒前
启成Z完成签到 ,获得积分10
7秒前
7秒前
小程同学完成签到,获得积分10
8秒前
jing煜完成签到,获得积分10
8秒前
孝艺完成签到 ,获得积分10
9秒前
冰激凌UP完成签到,获得积分10
9秒前
顾矜应助椒盐柠檬茶采纳,获得10
9秒前
xqq完成签到,获得积分10
11秒前
搜集达人应助风中冰香采纳,获得10
11秒前
吴旭东完成签到,获得积分10
11秒前
爆米花应助s513采纳,获得10
12秒前
汉堡包应助林攸之采纳,获得10
12秒前
冰激凌UP发布了新的文献求助10
12秒前
12秒前
13秒前
杜杜完成签到,获得积分10
14秒前
15秒前
15秒前
愉快谷芹完成签到,获得积分10
15秒前
heavennew完成签到,获得积分10
16秒前
MIAOMIAO发布了新的文献求助10
18秒前
m赤子心完成签到 ,获得积分10
19秒前
卷123发布了新的文献求助10
19秒前
baibai完成签到 ,获得积分10
19秒前
Fiona完成签到 ,获得积分10
20秒前
愉快谷芹发布了新的文献求助10
21秒前
zyjsunye完成签到 ,获得积分0
21秒前
zzz完成签到 ,获得积分10
22秒前
777完成签到 ,获得积分10
24秒前
坦率纸飞机完成签到 ,获得积分10
25秒前
凶狠的猎豹完成签到,获得积分10
25秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471302
求助须知:如何正确求助?哪些是违规求助? 3064297
关于积分的说明 9087901
捐赠科研通 2754992
什么是DOI,文献DOI怎么找? 1511689
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423