膜
纳米纤维
分子印迹聚合物
材料科学
化学工程
吸附
单体
金属有机骨架
选择性吸附
分子印迹
多孔性
表面改性
聚合物
纳米技术
选择性
化学
有机化学
复合材料
催化作用
工程类
生物化学
作者
Wendong Xing,Zhongfei Ma,Chong Wang,Jian Lu,Jia Gao,Chao Yu,Xinyu Lin,Chunxiang Li,Yilin Wu
标识
DOI:10.1016/j.seppur.2021.119624
摘要
Metal-organic frameworks (MOFs) are promising candidates to functionalized polymer membrane, its three dimensional porous network and large surface also provide inspiration for the construction of novel molecularly imprinted membranes (MIMs). In this study, a multiple strengthening strategy was proposed for the preparation of MOFs based molecularly imprinted nanofiber membranes (MINMs): (i) Polydopamine (PDA) modified PVDF nanofiber membranes (PVDF/PDA) as basal membrane was developed by in-situ self-polymerization method, which has improved the hydrophilicity and antifouling performance. (ii) ZIF-8 nanocrystals were assembled onto the surface of PVDF/PDA nanofibers membrane that not only increases the surface area of the nanofiber membrane to facilitate attachment of more imprinting sites, but also acts as a structure-directing functional monomer to further strengthen the specific recognition ability by synergistic effect. As a result, the MINMs achieves a desired adsorption capacity (31.32 mg g−1) and permselectivity (permselectivity factors β were 3.29, 3.39 and 3.51) towards template molecules. Importantly, the as-designed MINMs also displays strong practicability in simulated real sample. The presented MINMs fabrication strategy has shown tremendous potential for using MOFs to design MIMs with enhanced the selective separation performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI