材料科学
阳极
电导率
兴奋剂
掺杂剂
硅
多孔性
热液循环
化学工程
纳米技术
离子
电流密度
晶体结构
电阻率和电导率
Crystal(编程语言)
多孔硅
光电子学
复合材料
电极
结晶学
物理化学
化学
电气工程
工程类
物理
有机化学
量子力学
程序设计语言
计算机科学
作者
Chucheng Luo,Xiangyang Zhou,Jing Ding,Herong Xu,Xinming Wang,Haoteng Yao,Jingjing Tang,Juan Yang
标识
DOI:10.1016/j.coco.2021.100941
摘要
The poor electronic conductivity and inherent volume expansion pose challenges for Silicon (Si) to be commercialized. Herein, we investigate the influence of Mo-dopant on the electronic structure and crystal structure of Si using first-principle calculations. The results show that Mo-doping can expand the crystal lattice and reduce the bandgap of Si, which improves its intrinsic conductivity. Furthermore, Mo-doped porous nanostructured Si (Mo-PNSi) were first prepared through a hydrothermal method and magnesiothermic reduction. As a result, the obtained Mo-PNSi anodes depict a high specific capacity of 2197.7 mAh g−1 at a current density of 0.84 A g−1 and a high capacity retaining of nearly 100% from 30 to 200 cycles. In particular, Mo-PNSi anodes display superior cycling stability of 911.5 mAh g−1 after 1000 cycles at a current density of 4.2 A g−1. Even at a high rate of 6.72 A g−1, a specific capacity of 840.1 mAh g−1 can be delivered.
科研通智能强力驱动
Strongly Powered by AbleSci AI