Artificial intelligence of toilet (AI-Toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor

卫生间 压力传感器 人工智能 图像传感器 计算机科学 杠杆(统计) 鉴定(生物学) 计算机视觉 射频识别 实时计算 嵌入式系统 摩擦电效应 工程类 材料科学 计算机安全 机械工程 生物 复合材料 植物 废物管理
作者
Zixuan Zhang,Qiongfeng Shi,Tianyiyi He,Xinge Guo,Bowei Dong,Jason Lee,Chengkuo Lee
出处
期刊:Nano Energy [Elsevier BV]
卷期号:90: 106517-106517 被引量:95
标识
DOI:10.1016/j.nanoen.2021.106517
摘要

Smart toilet provides a feasible platform for the long-term analysis of person’s health. Common solutions for identification are based on camera or radio-frequency identification (RFID) technologies, but it is doubted for privacy issues. Here, we demonstrate an artificial intelligence of toilet (AI-toilet) based on a triboelectric pressure sensor array offering a more private approach with low cost and easily deployable software. The pressure sensor array attached on the toilet seat is composed of 10 textile-based triboelectric sensors, which can leverage the different pressure distribution of individual users' seating manner to get the biometric information. 6 users can be correctly identified with more than 90% accuracy using deep learning. The signals from pressure sensors also can be used for recording the seating time on the toilet. The system integrates a camera sensor to analyze the simulated urine by comparing with urine chart and classify the types and quantities of objects using deep learning. All information including two-factor user identification and entire seating time using pressure sensor array, and data from the urinalysis and stool analysis were automatically transferred to a cloud system and were further shown in user's mobile devices for better tracking their health status. • AI-toilet based on a triboelectric sensor for biometrics identification and a image sensor for urinalysis and stool analysis. • Frustum structure and spacer structure on eco-flex layer extend the sensing range for detection of seating pressure. • The biometrics information from 6 users seating on the toilet seat can be identified with the accuracy of 97.14%. • Two CNNs get the accuracy of 97.50% and 91.15% for simulated 4 different types of stools and stools' amounts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞123456完成签到,获得积分10
1秒前
zzz完成签到 ,获得积分10
1秒前
2秒前
2秒前
可爱的函函应助77采纳,获得30
3秒前
研友_VZG7GZ应助干净以珊采纳,获得10
5秒前
zho应助milo6666采纳,获得10
5秒前
哈哈完成签到,获得积分10
6秒前
活力的静曼完成签到,获得积分10
7秒前
7秒前
cdercder应助IVAN采纳,获得20
7秒前
科研通AI5应助西扬采纳,获得10
7秒前
科研通AI5应助小高采纳,获得10
8秒前
本恩宁发布了新的文献求助10
9秒前
9秒前
12秒前
blackhawkwu发布了新的文献求助30
12秒前
xiaohao完成签到 ,获得积分10
12秒前
13秒前
ALL完成签到,获得积分10
14秒前
WSY发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
zzz完成签到,获得积分10
18秒前
18秒前
Sun应助咎穆采纳,获得10
19秒前
流年发布了新的文献求助10
20秒前
20秒前
IVAN完成签到,获得积分10
21秒前
zzz发布了新的文献求助10
21秒前
归尘发布了新的文献求助10
21秒前
科研通AI2S应助机智的白猫采纳,获得10
22秒前
sht完成签到,获得积分10
22秒前
喂喂喂威完成签到,获得积分10
23秒前
思源应助本恩宁采纳,获得10
23秒前
太阳雨发布了新的文献求助10
23秒前
24秒前
24秒前
Sun完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719479
求助须知:如何正确求助?哪些是违规求助? 3265902
关于积分的说明 9941289
捐赠科研通 2979639
什么是DOI,文献DOI怎么找? 1634218
邀请新用户注册赠送积分活动 775671
科研通“疑难数据库(出版商)”最低求助积分说明 745765