Dynamic DETR: End-to-End Object Detection with Dynamic Attention

编码器 端到端原则 计算机科学 变压器 特征学习 模式识别(心理学) 人工智能 电压 工程类 操作系统 电气工程
作者
Xiyang Dai,Yinpeng Chen,Jianwei Yang,Pengchuan Zhang,Yuan Liu,Lei Zhang
标识
DOI:10.1109/iccv48922.2021.00298
摘要

In this paper, we present a novel Dynamic DETR (Detection with Transformers) approach by introducing dynamic attentions into both the encoder and decoder stages of DETR to break its two limitations on small feature resolution and slow training convergence. To address the first limitation, which is due to the quadratic computational complexity of the self-attention module in Transformer encoders, we propose a dynamic encoder to approximate the Transformer encoder’s attention mechanism using a convolution-based dynamic encoder with various attention types. Such an encoder can dynamically adjust attentions based on multiple factors such as scale importance, spatial importance, and representation (i.e., feature dimension) importance. To mitigate the second limitation of learning difficulty, we introduce a dynamic decoder by replacing the cross-attention module with a ROI-based dynamic attention in the Transformer decoder. Such a decoder effectively assists Transformers to focus on region of interests from a coarse-to-fine manner and dramatically lowers the learning difficulty, leading to a much faster convergence with fewer training epochs. We conduct a series of experiments to demonstrate our advantages. Our Dynamic DETR significantly reduces the training epochs (by 14×), yet results in a much better performance (by 3.6 on mAP). Meanwhile, in the standard 1× setup with ResNet-50 backbone, we archive a new state-of-the-art performance that further proves the learning effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到,获得积分10
2秒前
Yacoob完成签到,获得积分10
2秒前
依依完成签到,获得积分10
3秒前
3秒前
3秒前
华仔应助HHHH采纳,获得10
3秒前
3秒前
4秒前
jizzy完成签到,获得积分10
4秒前
青岚发布了新的文献求助10
4秒前
Imp完成签到,获得积分10
4秒前
上杉绘梨衣完成签到,获得积分10
4秒前
hush完成签到,获得积分20
4秒前
善学以致用应助装饭的桶采纳,获得10
5秒前
领导范儿应助受伤的豌豆采纳,获得10
6秒前
棉棉发布了新的文献求助10
6秒前
韩爽完成签到,获得积分20
6秒前
7秒前
依依发布了新的文献求助10
8秒前
贤惠的饼干完成签到,获得积分10
8秒前
8秒前
桥木有舟完成签到,获得积分10
9秒前
彭于晏应助記yian采纳,获得10
10秒前
Tourist应助Zel博博采纳,获得10
10秒前
10秒前
Kk完成签到,获得积分10
10秒前
闵问柳发布了新的文献求助10
10秒前
舒心书南完成签到,获得积分10
11秒前
纯真炳完成签到,获得积分10
12秒前
12秒前
勤奋怀蕊完成签到,获得积分20
12秒前
12秒前
Citrons发布了新的文献求助10
13秒前
流北爷发布了新的文献求助10
13秒前
13秒前
13秒前
Hello应助青岚采纳,获得10
13秒前
Rubywang完成签到,获得积分10
14秒前
usu发布了新的文献求助10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102