Dynamic DETR: End-to-End Object Detection with Dynamic Attention

编码器 端到端原则 计算机科学 变压器 特征学习 模式识别(心理学) 人工智能 电压 工程类 操作系统 电气工程
作者
Xiyang Dai,Yinpeng Chen,Jianwei Yang,Pengchuan Zhang,Yuan Liu,Lei Zhang
标识
DOI:10.1109/iccv48922.2021.00298
摘要

In this paper, we present a novel Dynamic DETR (Detection with Transformers) approach by introducing dynamic attentions into both the encoder and decoder stages of DETR to break its two limitations on small feature resolution and slow training convergence. To address the first limitation, which is due to the quadratic computational complexity of the self-attention module in Transformer encoders, we propose a dynamic encoder to approximate the Transformer encoder’s attention mechanism using a convolution-based dynamic encoder with various attention types. Such an encoder can dynamically adjust attentions based on multiple factors such as scale importance, spatial importance, and representation (i.e., feature dimension) importance. To mitigate the second limitation of learning difficulty, we introduce a dynamic decoder by replacing the cross-attention module with a ROI-based dynamic attention in the Transformer decoder. Such a decoder effectively assists Transformers to focus on region of interests from a coarse-to-fine manner and dramatically lowers the learning difficulty, leading to a much faster convergence with fewer training epochs. We conduct a series of experiments to demonstrate our advantages. Our Dynamic DETR significantly reduces the training epochs (by 14×), yet results in a much better performance (by 3.6 on mAP). Meanwhile, in the standard 1× setup with ResNet-50 backbone, we archive a new state-of-the-art performance that further proves the learning effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
呦呦又鹿发布了新的文献求助10
2秒前
动听安筠完成签到 ,获得积分10
2秒前
Hey完成签到,获得积分10
2秒前
尺八发布了新的文献求助10
3秒前
酷波er应助优雅盼海采纳,获得10
3秒前
AA完成签到,获得积分10
4秒前
5秒前
Ricewind发布了新的文献求助10
6秒前
Lucy完成签到,获得积分10
7秒前
沙子发布了新的文献求助30
8秒前
完美世界应助李新源采纳,获得10
8秒前
桐桐应助大军门诊采纳,获得10
9秒前
范雅寒完成签到 ,获得积分10
9秒前
孤独的青曼完成签到,获得积分20
10秒前
朴素的清完成签到 ,获得积分10
12秒前
优雅盼海完成签到,获得积分20
12秒前
h3xxxmax完成签到,获得积分10
12秒前
单纯雅香发布了新的文献求助10
12秒前
14秒前
张小仙完成签到,获得积分10
14秒前
15秒前
无奈白竹完成签到,获得积分10
16秒前
luozhuang2023完成签到,获得积分10
17秒前
Ava应助骄傲的牛奶瓶采纳,获得10
18秒前
19秒前
19秒前
19秒前
Puokn完成签到,获得积分10
20秒前
20秒前
HCT完成签到,获得积分20
22秒前
李新源发布了新的文献求助10
22秒前
白英完成签到,获得积分10
23秒前
星期八完成签到,获得积分10
23秒前
redondo完成签到,获得积分10
23秒前
斯奈克发布了新的文献求助10
25秒前
28秒前
我是老大应助surain采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441735
求助须知:如何正确求助?哪些是违规求助? 3038293
关于积分的说明 8971453
捐赠科研通 2726658
什么是DOI,文献DOI怎么找? 1495529
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688269