拉曼光谱
硫黄
部分
电解质
锂(药物)
催化作用
空位缺陷
材料科学
化学
纳米技术
化学工程
电极
物理化学
结晶学
有机化学
内分泌学
工程类
物理
光学
医学
作者
Menglei Wang,Zhongti Sun,Haina Ci,Zixiong Shi,Lin Shen,Chaohui Wei,Yifan Ding,Xianzhong Yang,Jingyu Sun
标识
DOI:10.1002/ange.202109291
摘要
Abstract Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 ) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe 2 is probed to induce the transformation from SeVs‐MoSe 2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li 2 S 2 to Li 2 S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm −2 ; 4.0 μL mg −1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI