A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒子应助redglo采纳,获得10
1秒前
2秒前
淼鑫完成签到,获得积分10
2秒前
29完成签到,获得积分10
3秒前
玩转非晶发布了新的文献求助10
3秒前
3秒前
三两白菜完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
6秒前
戚戚发布了新的文献求助10
7秒前
聪明月饼完成签到 ,获得积分10
8秒前
好好顶顶顶顶完成签到,获得积分10
8秒前
10秒前
cx完成签到,获得积分10
10秒前
11秒前
13秒前
wait发布了新的文献求助10
15秒前
16秒前
redglo给redglo的求助进行了留言
17秒前
CynthiaaaCat完成签到,获得积分10
17秒前
xiongyh10完成签到,获得积分10
18秒前
郭淳完成签到,获得积分10
18秒前
JamesPei应助ypeng采纳,获得10
18秒前
19秒前
luu发布了新的文献求助30
19秒前
wait完成签到,获得积分20
20秒前
21秒前
22秒前
22秒前
精明尔曼完成签到,获得积分10
23秒前
深情安青应助1234采纳,获得10
23秒前
NexusExplorer应助yingying采纳,获得10
25秒前
8812077完成签到,获得积分10
25秒前
26秒前
令狐新竹完成签到 ,获得积分10
27秒前
GnodNy发布了新的文献求助30
28秒前
美好斓发布了新的文献求助10
28秒前
哈哈哈完成签到,获得积分10
31秒前
长期素食发布了新的文献求助10
32秒前
菜菜鱼发布了新的文献求助20
33秒前
redglo完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323