亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang123笛发布了新的文献求助10
刚刚
星辰大海应助ttssooe采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得30
7秒前
7秒前
zhang123笛完成签到,获得积分10
12秒前
23秒前
钙钛矿电池发布了新的文献求助200
24秒前
24秒前
无花果应助一颗苹果采纳,获得10
28秒前
1900发布了新的文献求助10
29秒前
29秒前
空蝉发布了新的文献求助10
30秒前
30秒前
33秒前
科研通AI6应助空蝉采纳,获得10
39秒前
ivy发布了新的文献求助10
40秒前
Gryff完成签到 ,获得积分10
40秒前
1900完成签到,获得积分20
43秒前
44秒前
田様应助lxb采纳,获得10
48秒前
二狗完成签到 ,获得积分10
51秒前
光合作用完成签到,获得积分10
56秒前
王令完成签到,获得积分10
58秒前
务实书包完成签到,获得积分10
1分钟前
王令发布了新的文献求助10
1分钟前
彭于晏应助jamaisvu采纳,获得30
1分钟前
李爱国应助jamaisvu采纳,获得30
1分钟前
1分钟前
空空伊完成签到,获得积分10
1分钟前
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
1分钟前
silence完成签到 ,获得积分10
1分钟前
1分钟前
伯云完成签到,获得积分10
1分钟前
所所应助无语的寄文采纳,获得10
1分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528934
求助须知:如何正确求助?哪些是违规求助? 4618236
关于积分的说明 14562294
捐赠科研通 4557142
什么是DOI,文献DOI怎么找? 2497360
邀请新用户注册赠送积分活动 1477590
关于科研通互助平台的介绍 1448890