A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 社会科学 物理 结构工程 量子力学 社会学 电气工程 操作系统
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jazzmantan发布了新的文献求助10
刚刚
哈哈完成签到,获得积分10
1秒前
成就觅翠完成签到,获得积分10
2秒前
缓慢寄翠完成签到,获得积分10
2秒前
5秒前
5秒前
7秒前
8秒前
vive999发布了新的文献求助10
10秒前
二月发布了新的文献求助30
11秒前
11秒前
Twilight发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
高枕无忧完成签到 ,获得积分10
12秒前
18秒前
Twilight完成签到,获得积分20
18秒前
王祥坤完成签到,获得积分10
18秒前
哈哈发布了新的文献求助10
19秒前
19秒前
不安的嘉懿完成签到,获得积分10
21秒前
王祥坤发布了新的文献求助10
23秒前
Blanca发布了新的文献求助30
24秒前
26秒前
27秒前
27秒前
逍遥猪皮完成签到,获得积分10
29秒前
开心的绿凝完成签到,获得积分10
30秒前
30秒前
轻松板栗完成签到,获得积分10
31秒前
李月月给李月月的求助进行了留言
32秒前
姜jiang发布了新的文献求助10
32秒前
33秒前
木木木发布了新的文献求助10
33秒前
33秒前
梅竹发布了新的文献求助10
33秒前
菜菜发布了新的文献求助10
34秒前
明月完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
陈123发布了新的文献求助10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336