亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
ceeray23发布了新的文献求助20
13秒前
科目三应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Asura完成签到,获得积分10
1分钟前
伯云完成签到,获得积分10
2分钟前
paradox完成签到 ,获得积分10
2分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
yipmyonphu应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
pluto发布了新的文献求助10
4分钟前
Ava应助pluto采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
北辰zdx完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
BowieHuang应助ceeray23采纳,获得50
6分钟前
淡定自中发布了新的文献求助10
6分钟前
yipmyonphu应助科研通管家采纳,获得10
7分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
BowieHuang应助sherry采纳,获得10
7分钟前
ya完成签到,获得积分10
7分钟前
彭于晏应助李秋秋采纳,获得10
7分钟前
8分钟前
8分钟前
李秋秋发布了新的文献求助10
8分钟前
8分钟前
遗忘完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543345
求助须知:如何正确求助?哪些是违规求助? 4629459
关于积分的说明 14611236
捐赠科研通 4570776
什么是DOI,文献DOI怎么找? 2505929
邀请新用户注册赠送积分活动 1483143
关于科研通互助平台的介绍 1454506