清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bogula1112完成签到 ,获得积分10
12秒前
lilyzhang2023完成签到 ,获得积分10
35秒前
1分钟前
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
单薄水星发布了新的文献求助10
1分钟前
2分钟前
lutos发布了新的文献求助10
2分钟前
hoy完成签到 ,获得积分10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
林楚棋完成签到 ,获得积分10
2分钟前
务实的初蝶完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
小珂完成签到,获得积分10
3分钟前
清秀LL完成签到 ,获得积分10
3分钟前
山东大煎饼完成签到,获得积分10
3分钟前
lllyjs完成签到 ,获得积分10
3分钟前
wuqi完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
小小虾完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
6分钟前
卡布发布了新的文献求助10
6分钟前
Hello应助卡布采纳,获得10
6分钟前
7分钟前
碗碗豆喵完成签到 ,获得积分10
7分钟前
Luke发布了新的文献求助10
7分钟前
Ava应助Luke采纳,获得10
8分钟前
8分钟前
Luke发布了新的文献求助10
8分钟前
Luke发布了新的文献求助10
8分钟前
小王wang完成签到,获得积分10
9分钟前
apk866完成签到 ,获得积分10
9分钟前
9分钟前
乐乐应助Luke采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685602
关于积分的说明 14838712
捐赠科研通 4672541
什么是DOI,文献DOI怎么找? 2538338
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965