亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
5秒前
胡美玲发布了新的文献求助10
10秒前
谷雨完成签到,获得积分10
12秒前
呵呵完成签到,获得积分10
13秒前
LC完成签到 ,获得积分10
14秒前
吉吉国王的跟班完成签到 ,获得积分10
25秒前
26秒前
健壮天玉完成签到,获得积分10
28秒前
32秒前
自信书文完成签到 ,获得积分10
33秒前
所所应助ss采纳,获得10
43秒前
赘婿应助谷雨采纳,获得10
45秒前
52秒前
53秒前
yc096vps完成签到,获得积分10
54秒前
爆米花应助arizaki7采纳,获得10
55秒前
领导范儿应助Nature_Science采纳,获得10
1分钟前
腼腆的若雁完成签到,获得积分10
1分钟前
1分钟前
Viiigo完成签到,获得积分10
1分钟前
科目三应助yang采纳,获得10
1分钟前
ylj发布了新的文献求助10
1分钟前
灵巧的蓝发布了新的文献求助10
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
今后应助ylj采纳,获得10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
失眠的菠萝应助灵巧的蓝采纳,获得10
1分钟前
mmmmlll发布了新的文献求助10
1分钟前
健壮天玉发布了新的文献求助10
1分钟前
1分钟前
英姑应助1650989430采纳,获得10
1分钟前
外向太阳完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606551
求助须知:如何正确求助?哪些是违规求助? 4690934
关于积分的说明 14866623
捐赠科研通 4706603
什么是DOI,文献DOI怎么找? 2542754
邀请新用户注册赠送积分活动 1508160
关于科研通互助平台的介绍 1472276