A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
pangboo发布了新的文献求助10
2秒前
yn发布了新的文献求助30
4秒前
昔年完成签到 ,获得积分10
4秒前
4秒前
4秒前
后浪完成签到 ,获得积分10
4秒前
年轻傲松完成签到,获得积分20
8秒前
8秒前
freshman3005完成签到,获得积分10
8秒前
wuqs发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
年轻傲松发布了新的文献求助10
11秒前
LLL完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
英吉利25发布了新的文献求助10
15秒前
同福发布了新的文献求助10
16秒前
16秒前
俭朴的易烟完成签到,获得积分10
16秒前
Forever完成签到,获得积分10
17秒前
dahafei完成签到,获得积分10
18秒前
Charlene发布了新的文献求助10
19秒前
19秒前
杨y完成签到 ,获得积分10
19秒前
19秒前
同福完成签到,获得积分10
19秒前
JamesPei应助夜半芜凉采纳,获得10
20秒前
刘烨完成签到 ,获得积分10
21秒前
龙九局完成签到 ,获得积分10
22秒前
迅速的易巧完成签到 ,获得积分10
22秒前
科研人发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
wangqing发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600572
求助须知:如何正确求助?哪些是违规求助? 4686207
关于积分的说明 14842319
捐赠科研通 4677076
什么是DOI,文献DOI怎么找? 2538896
邀请新用户注册赠送积分活动 1505827
关于科研通互助平台的介绍 1471201