亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI2S应助火星上惋庭采纳,获得10
8秒前
Lin3J发布了新的文献求助30
39秒前
43秒前
小马甲应助科研通管家采纳,获得10
48秒前
48秒前
Lin3J完成签到,获得积分20
50秒前
张皓完成签到 ,获得积分10
51秒前
DduYy完成签到,获得积分10
51秒前
1分钟前
Lin3J关注了科研通微信公众号
1分钟前
blenx完成签到,获得积分10
1分钟前
范东乐完成签到,获得积分20
2分钟前
2分钟前
oleskarabach完成签到,获得积分20
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
紫熊发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
linkman发布了新的文献求助10
3分钟前
phd发布了新的文献求助10
3分钟前
紫熊完成签到,获得积分10
3分钟前
wearelulu完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小伙子完成签到,获得积分10
4分钟前
4分钟前
lsl应助科研通管家采纳,获得50
4分钟前
5分钟前
采薇发布了新的文献求助10
5分钟前
5分钟前
6分钟前
wk123发布了新的文献求助10
6分钟前
YifanWang应助科研通管家采纳,获得30
6分钟前
在水一方应助科研通管家采纳,获得10
6分钟前
何为完成签到 ,获得积分10
8分钟前
无花果应助ARESCI采纳,获得10
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765525
关于积分的说明 15025617
捐赠科研通 4803092
什么是DOI,文献DOI怎么找? 2567996
邀请新用户注册赠送积分活动 1525499
关于科研通互助平台的介绍 1485011