A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芽茶完成签到,获得积分10
2秒前
wandaiji发布了新的文献求助10
3秒前
9秒前
r41r32完成签到 ,获得积分10
9秒前
wandaiji完成签到,获得积分10
10秒前
11秒前
djejje完成签到 ,获得积分10
12秒前
wq发布了新的文献求助10
12秒前
13秒前
共享精神应助小哑巴采纳,获得10
14秒前
SciGPT应助娜娜采纳,获得10
14秒前
干净的指甲油完成签到,获得积分10
15秒前
kgmilan完成签到,获得积分10
15秒前
18秒前
InaZheng发布了新的文献求助30
18秒前
敏感凝云完成签到 ,获得积分10
19秒前
20秒前
SU完成签到,获得积分10
20秒前
20秒前
lalala完成签到,获得积分10
21秒前
22秒前
万能图书馆应助华W采纳,获得10
22秒前
22秒前
天边外发布了新的文献求助10
22秒前
Allen发布了新的文献求助20
22秒前
soapffz完成签到,获得积分10
22秒前
Liufgui应助生动路人采纳,获得50
23秒前
shuangma发布了新的文献求助10
24秒前
24秒前
MTF发布了新的文献求助10
25秒前
25秒前
Hanson完成签到,获得积分10
26秒前
NexusExplorer应助林小园采纳,获得10
27秒前
Foch发布了新的文献求助10
27秒前
Orange应助凤梨采纳,获得10
27秒前
汉堡包应助wz采纳,获得10
30秒前
31秒前
天道酬勤完成签到,获得积分10
33秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080