A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
所所应助廉洁采纳,获得10
2秒前
冬瓜鑫完成签到,获得积分10
2秒前
聪明萤完成签到 ,获得积分20
2秒前
xu完成签到,获得积分10
3秒前
GingerF应助张路采纳,获得50
4秒前
甜瓜不熟发布了新的文献求助10
4秒前
莫小烦完成签到,获得积分10
4秒前
轻松的灵槐完成签到,获得积分10
4秒前
zybbb完成签到 ,获得积分10
5秒前
aa完成签到,获得积分10
5秒前
考槃在涧完成签到 ,获得积分10
6秒前
luoyang完成签到,获得积分10
6秒前
陈陌陌完成签到,获得积分10
7秒前
小青椒应助科研通管家采纳,获得50
7秒前
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
共产主义战士完成签到,获得积分10
7秒前
whyme完成签到,获得积分10
8秒前
可耐的寒松完成签到,获得积分10
9秒前
咸蛋黄蘸酱完成签到,获得积分10
10秒前
馆长举报l_liu求助涉嫌违规
10秒前
10秒前
开心向真完成签到,获得积分10
10秒前
Tianling完成签到,获得积分0
10秒前
刘丰丰完成签到 ,获得积分10
12秒前
多喝水完成签到,获得积分10
12秒前
cai完成签到 ,获得积分10
12秒前
一三二五七完成签到 ,获得积分0
13秒前
14秒前
大壳发布了新的文献求助10
14秒前
越幸运完成签到 ,获得积分10
14秒前
东东完成签到 ,获得积分10
15秒前
聪慧板凳完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助50
15秒前
17秒前
廉洁发布了新的文献求助10
18秒前
冬日毛衣完成签到 ,获得积分10
18秒前
zwhuaixu22完成签到 ,获得积分10
19秒前
渡劫完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597821
求助须知:如何正确求助?哪些是违规求助? 4009237
关于积分的说明 12410243
捐赠科研通 3688506
什么是DOI,文献DOI怎么找? 2033257
邀请新用户注册赠送积分活动 1066538
科研通“疑难数据库(出版商)”最低求助积分说明 951714