已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption

强化学习 计算机科学 消费(社会学) 短时记忆 钢筋 过程(计算) 能源消耗 预测建模 期限(时间) 人工智能 机器学习 需求响应 工程类 人工神经网络 循环神经网络 操作系统 社会学 物理 电气工程 结构工程 量子力学 社会科学
作者
Xinlei Zhou,Wenye Lin,Ritunesh Kumar,Ping Cui,Zhenjun Ma
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118078-118078 被引量:39
标识
DOI:10.1016/j.apenergy.2021.118078
摘要

Data-driven modeling emerges as a promising approach to predicting building electricity consumption and facilitating building energy management. However, the majority of the existing models suffer from performance degradation during the prediction process. This paper presents a new strategy that integrates Long Short Term Memory (LSTM) models and Reinforcement Learning (RL) agents to forecast building next-day electricity consumption and peak electricity demand. In this strategy, LSTM models were first developed and trained using the historical data as the base models for prediction. RL agents were further constructed and introduced to learn a policy that can dynamically tune the parameters of the LSTM models according to the prediction error. This strategy was tested using the electricity consumption data collected from a group of university buildings and student accommodations. The results showed that for the student accommodations which showed relatively large monthly variations in daily electricity consumption, the proposed strategy can increase the prediction accuracy by up to 23.5% as compared with the strategy using the LSTM models only. However, when it was applied to the buildings with insignificant monthly variations in the daily electricity consumption, the prediction accuracy did not show an obvious improvement when compared with the use of the LSTM models alone. This study demonstrated how to use LSTM models and reinforcement learning with self-optimization capability to likely provide more reliable prediction in daily electricity consumption and thus to facilitate building optimal operation and demand side management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dmooou完成签到,获得积分10
1秒前
尖尖发布了新的文献求助30
1秒前
2秒前
chenwuhao完成签到 ,获得积分10
3秒前
科研通AI6应助陈明健采纳,获得10
6秒前
轻松的水壶完成签到 ,获得积分10
7秒前
朴素剑心完成签到,获得积分10
8秒前
钧凯发布了新的文献求助10
9秒前
9秒前
10秒前
无情山水完成签到,获得积分10
10秒前
小罗发布了新的文献求助10
14秒前
Orange应助乐观紫霜采纳,获得10
15秒前
GY发布了新的文献求助10
15秒前
哈哈完成签到 ,获得积分10
16秒前
16秒前
18秒前
18秒前
19秒前
冷酷飞飞完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
23秒前
戴和家发布了新的文献求助10
23秒前
大个应助中海采纳,获得10
23秒前
闪闪蜜粉完成签到 ,获得积分10
24秒前
gkw发布了新的文献求助10
24秒前
zyqy完成签到 ,获得积分10
24秒前
大白牛发布了新的文献求助30
24秒前
小二郎应助小罗采纳,获得10
25秒前
大白牛发布了新的文献求助30
25秒前
25秒前
大白牛发布了新的文献求助10
25秒前
大白牛发布了新的文献求助10
25秒前
大白牛发布了新的文献求助10
25秒前
大白牛发布了新的文献求助10
25秒前
大白牛发布了新的文献求助30
26秒前
在水一方应助包子吃多了采纳,获得10
26秒前
大白牛发布了新的文献求助30
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5147463
求助须知:如何正确求助?哪些是违规求助? 4344056
关于积分的说明 13528848
捐赠科研通 4185754
什么是DOI,文献DOI怎么找? 2295311
邀请新用户注册赠送积分活动 1295655
关于科研通互助平台的介绍 1239052