神经炎症
TLR4型
小胶质细胞
脂多糖
药理学
免疫印迹
行为绝望测验
炎症
吡喃结构域
HDAC3型
受体
免疫学
化学
生物
医学
海马体
内分泌学
组蛋白脱乙酰基酶
内科学
抗抑郁药
炎症体
生物化学
组蛋白
基因
作者
Hetao Bian,Ling Xiao,Liang Liang,Yinping Xie,Huiling Wang,Gaohua Wang
标识
DOI:10.1016/j.intimp.2021.108259
摘要
Depression is a prevalent mental disorder. However, its pathophysiological mechanism has still remained elusive, and a limited number of effective treatments have been presented. Recent studies have shown that neuroinflammation and microglial activation are involved in the pathogenesis of depression. Histone deacetylase 3 (HDAC3) has neurotoxic effects on several neuropathological conditions. The inhibition of HDAC3 has been reported to induce anti-inflammatory and antioxidant effects. RGFP966 is a highly selective inhibitor of HDAC3. This study aimed to investigate the antidepressant effect of RGFP966 on lipopolysaccharide (LPS)-induced depressive-like behaviors in mice and to explore its possible mechanism. Adult male C57BL/6J mice were utilized in this study. The LPS and RGFP966 were injected intraperitoneally daily for 5 days. The behavior tests were performed to elucidate the depression-like behaviors. Western blot, ELISA and immunofluorescence staining were used to study the HDAC3/TLR4/NLRP3 pathway-related proteins. The results of behavioral tests showed that RGFP966 could improve the LPS-induced depressive-like behaviors in mice. The results of Western blotting showed that RGFP966 treatment downregulated the expression levels of toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) (P < 0.05). Furthermore, the results of immunofluorescence staining showed that RGFP966 treatment inhibited microglial activation in the hippocampus of mice (P < 0.01). These findings suggested that RGFP966 could effectively ameliorate LPS-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. The anti-inflammatory mechanism of RGFP966 might be related to the inhibition of the HDAC3/TLR4/NLRP3 signaling pathway. Therefore, inhibition of HDAC3 using RGFP966 could serve as a potential treatment strategy for depression.
科研通智能强力驱动
Strongly Powered by AbleSci AI