催化作用
法拉第效率
选择性
解吸
氢
化学
电化学
密度泛函理论
吸附
分析化学(期刊)
交换电流密度
反应速率
物理化学
无机化学
材料科学
Atom(片上系统)
计算化学
电极
有机化学
嵌入式系统
塔菲尔方程
计算机科学
作者
Long Lin,Haobo Li,Yi Wang,Hefei Li,Pengfei Wei,Bing Nan,Rui Si,Guoxiong Wang,Xinhe Bao
标识
DOI:10.1002/anie.202113135
摘要
Reaction temperature is an important parameter to tune the selectivity and activity of electrochemical CO2 reduction reaction (CO2 RR) due to different thermodynamics of CO2 RR and competitive hydrogen evolution reaction (HER). In this work, temperature-dependent CO2 RR over Fe-N-C and Ni-N-C single-atom catalysts are investigated from 303 to 343 K. Increasing the reaction temperature improves and decreases CO Faradaic efficiency over Fe-N-C and Ni-N-C catalysts at high overpotentials, respectively. CO current density over Fe-N-C catalyst increases with temperature, then gets into a plateau at 323 K, finally reaches the maximum value of 185.8 mA cm-2 at 343 K. While CO current density over Ni-N-C catalyst achieves the maximum value of 252.5 mA cm-2 at 323 K, and then drops significantly to 202.9 mA cm-2 at 343 K. Temperature programmed desorption results and density functional theory calculations reveal that the difference of temperature-dependent variation on CO Faradaic efficiency and current density between Fe-N-C and Ni-N-C catalysts results from the varied adsorption strength of key reaction intermediates during CO2 RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI