Tin-based perovskite solar cells: Further improve the performance of the electron transport layer-free structure by device simulation

材料科学 光电子学 图层(电子) 自由电子模型 电子传输链 太阳能电池 钙钛矿(结构) 工程物理 电子 纳米技术 化学工程 冶金 化学 物理 工程类 量子力学 生物化学
作者
Liangsheng Hao,Min Zhou,Yubao Song,Xinxia Ma,Jiang Wu,Qunzhi Zhu,Zaiguo Fu,Yihao Liu,Jiang Wu,Tong Li
出处
期刊:Solar Energy [Elsevier]
卷期号:230: 345-354 被引量:41
标识
DOI:10.1016/j.solener.2021.09.091
摘要

• ETL (Electron Transport Layer) is not a prerequisite for excellent device efficiency. • Comprehensive analysis of the factors of solar cells with ETL-free structure. • Excessive thickness of the absorbing layer will lead to an increase in harmful recombination. • Defect density increases the recombination rate and reduces the performance of the device. • Excessive interfacial defect density leads to asymmetric effects. • The lower the valence band of different HTLs, the higher the open-circuit voltage V OC . With the rapid development of perovskite solar cells (PSCs), PSCs without electron transport layer (ETL) structure have been reported one after another, but the efficiency is low. In this work, a tin-based ETL-free structure of perovskite solar cell is introduced. In order to explore the internal influencing factors of the device with ETL-free structure, we used SCAPS-1D (Solar Cells Capacitance Simulator) to simulate the device and adjust the appropriate physical parameters to approximate the results reported in the experiment. The simulation results show that the thickness of the absorption layer, defect density, operating temperature and band gap have different effects on the performance of the device, and the best absorbent layer thickness is 600 nm. When the operating temperature exceeds 300 K, the performance parameters will decrease, and the band gap is best controlled at about 1.3 V. It should be pointed out that defect density is the main culprit that seriously affects device performance. When defect density exceeds 10 15 cm −3 , power conversion efficiency (PCE) begins to decline significantly, and we need to pay more attention to defect density. At the same time, the effects of different interface defect layers (IDL) on device performance are simulated. It is found that when the defect density of the interface defect layer is too high, the asymmetry effect will appear. The interface defect layer IDL2 between the absorption layer and the hole transport layer (HTL) has a greater effect on the open circuit voltage ( V OC ), and the interface defect layer IDL1 has a greater effect on PCE. Therefore, it is necessary to pay attention to these defect layers to improve the V OC and PCE. Finally, based on ETL-free PSCs, we list HTL of different materials for reference, and provide new ideas for perovskite solar cells in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
wasiwan完成签到,获得积分10
6秒前
科研通AI2S应助圣晟胜采纳,获得10
7秒前
7秒前
长清发布了新的文献求助30
7秒前
彭于晏应助Jian采纳,获得20
7秒前
朴蒲萤荧完成签到,获得积分10
8秒前
文静紫霜完成签到 ,获得积分10
9秒前
xiang完成签到 ,获得积分10
9秒前
背后雨柏完成签到 ,获得积分10
12秒前
12秒前
13秒前
seata完成签到,获得积分10
14秒前
SCINEXUS应助科研通管家采纳,获得50
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
勿明应助科研通管家采纳,获得30
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
SCINEXUS应助科研通管家采纳,获得20
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
SCINEXUS应助科研通管家采纳,获得20
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
胖胖猪完成签到,获得积分10
18秒前
21秒前
田様应助Cz采纳,获得10
21秒前
科研通AI2S应助宇文数学采纳,获得10
22秒前
酷波er应助清新的苑博采纳,获得10
24秒前
Cz完成签到,获得积分20
25秒前
传奇3应助圣晟胜采纳,获得10
25秒前
韩帅发布了新的文献求助10
26秒前
薛定谔的猫完成签到,获得积分10
26秒前
27秒前
清秀的SONG完成签到 ,获得积分10
28秒前
霍不言完成签到,获得积分10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849