双金属片
塔菲尔方程
双功能
色素敏化染料
材料科学
催化作用
过电位
化学工程
制氢
氧化还原
能量转换效率
氧化物
无机化学
纳米技术
电极
化学
电解质
电化学
光电子学
冶金
有机化学
物理化学
工程类
作者
Yongwei Zhang,Sining Yun,Xinying Qiao,Menglong Sun,Jiaoe Dang,Changwei Dang,Jingjing Yang
标识
DOI:10.1016/j.jallcom.2021.162349
摘要
Developing high-performance and low-cost catalysts for replacing Pt-based catalysts is a significant challenge for solar cells and water splitting applications. In this work, a bifunctional hybrid catalyst of MnTa2O6@MPC (MPC: mesh-like bio-based porous carbon) was synthesized, using a co-precipitation approach. Benefiting from the high specific surface area (332.743 m2 g−1), integrating the merits of the electrical conductivity of MPC, the outstanding electrocatalytic ability of MnTa2O6, and the synergistic effect between MnTa2O6 and MPC, the catalytic activity of MnTa2O6@MPC was significantly enhanced. To boost the photovoltaic performance of dye-sensitized solar cells, a novel Cu2+/Cu+ redox mediator and dye (Y123, D35) were adopted for replacing the traditional I3-/I- redox mediator and N719 dye, respectively. The resulting advanced solar cell with the Cu2+/Cu+ redox mediator based on the MnTa2O6@MPC counter electrode catalyst exhibited a photovoltage of ~0.88 V, and cell efficiencies of 3.41% and 1.92% for the D35 and Y123 dye systems, respectively, which are respectively 16% and 8% higher than that of Pt. MnTa2O6@MPC also exhibited significant catalytic ability for hydrogen production, yielding a small overpotential of 141.9 mV at a current density of 10 mA cm−2 and a small Tafel slope of 105.0 mV dec−1 in an alkaline medium. This work provides promising guidance for designing bifunctional hybrid electrocatalysts for high-performance new energy devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI