Explainable neural network-based approach to Kano categorisation of product features from online reviews

卡诺模型 计算机科学 特征(语言学) 产品(数学) 人工神经网络 聚类分析 文字嵌入 人工智能 超参数 机器学习 数据挖掘 嵌入 数学 服务(商务) 营销 几何学 哲学 服务质量 业务 语言学
作者
Junegak Joung,Harrison Kim
出处
期刊:International Journal of Production Research [Informa]
卷期号:60 (23): 7053-7073 被引量:21
标识
DOI:10.1080/00207543.2021.2000656
摘要

The Kano model is an extensively used technique for understanding different types of customer preferences. It classifies product features based on the effects of their performance on the overall customer satisfaction. Compared to surveys, numerous online reviews can be easily collected at a lower cost. This paper proposes an explainable neural network-based approach for the Kano categorisation of product features from online reviews. First, product feature words are identified by clustering nouns based on word embedding. Subsequently, the sentiments of the product feature words are determined by conducting the Vader sentiment analysis. Finally, the effects of the sentiments of each product feature on the star rating are estimated using explainable neural networks. Based on their effects, the product features are classified into the Kano categories. A case study of three Fitbit models is performed to validate the proposed approach. The Kano categorisation by the proposed approach is compared with the results of a previous product feature word clustering and ensemble neural network-based method. The results exhibit that the former presents a more reliable performance than the latter. The proposed approach is automated after providing several hyperparameters and can assist companies in conducting the Kano analysis with increased speed and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
okghy发布了新的文献求助10
1秒前
zcydbttj2011完成签到 ,获得积分10
1秒前
在水一方应助哈哈哈采纳,获得10
1秒前
1秒前
优美元枫完成签到,获得积分10
2秒前
3秒前
赵胜男完成签到 ,获得积分10
3秒前
4秒前
共享精神应助坚强的樱采纳,获得10
4秒前
5秒前
千陽完成签到,获得积分10
5秒前
bluesiryao完成签到,获得积分10
5秒前
Miracle完成签到,获得积分10
5秒前
托丽莲睡拿完成签到,获得积分10
5秒前
5秒前
5秒前
DAYTOY发布了新的文献求助50
6秒前
杀出个黎明举报求助违规成功
6秒前
whatever举报求助违规成功
6秒前
iNk举报求助违规成功
6秒前
6秒前
linxue完成签到,获得积分10
6秒前
蛋蛋1完成签到,获得积分10
7秒前
7秒前
8秒前
ss发布了新的文献求助10
8秒前
SHJ完成签到,获得积分20
8秒前
海棠听风发布了新的文献求助10
9秒前
23发布了新的文献求助10
9秒前
xde145完成签到,获得积分10
9秒前
10秒前
shime完成签到,获得积分10
10秒前
费城青年发布了新的文献求助10
10秒前
10秒前
11秒前
SHDeathlock给SHDeathlock的求助进行了留言
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794