MRI‐Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors

接收机工作特性 医学 有效扩散系数 曼惠特尼U检验 卷积神经网络 磁共振弥散成像 磁共振成像 放射科 核医学 病理 计算机科学 人工智能 内科学
作者
Junming Jian,Yongai Li,Wei Xia,He Zhang,Rui Zhang,Haiming Li,Xingyu Zhao,Shuhui Zhao,Jiayi Zhang,Songqi Cai,Xiaodong Wu,Xin Gao,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (1): 173-181 被引量:15
标识
DOI:10.1002/jmri.28008
摘要

Preoperative differentiation of borderline from malignant epithelial ovarian tumors (BEOT vs. MEOT) is challenging and can significantly impact surgical management.To develop a multiple instance convolutional neural network (MICNN) that can differentiate BEOT from MEOT, and to compare its diagnostic performance with that of radiologists.Retrospective study of eight clinical centers.Between January 2010 and June 2018, a total of 501 women (mean age, 48.93 ± 14.05 years) with histopathologically confirmed BEOT (N = 165) or MEOT (N = 336) were divided into the training (N = 342) and validation cohorts (N = 159).Three axial sequences from 1.5 or 3 T scanner were used: fast spin echo T2-weighted imaging with fat saturation (T2WI FS), echo planar diffusion-weighted imaging, and 2D volumetric interpolated breath-hold examination of contrast-enhanced T1-weighted imaging (CE-T1WI) with FS.Three monoparametric MICNN models were built based on T2WI FS, apparent diffusion coefficient map, and CE-T1WI. Based on these monoparametric models, we constructed an early multiparametric (EMP) model and a late multiparametric (LMP) model using early and late information fusion methods, respectively. The diagnostic performance of the models was evaluated using the receiver operating characteristic (ROC) curve and compared to the performance of six radiologists with varying levels of experience.We used DeLong test, chi-square test, Mann-Whitney U-test, and t-test, with significance level of 0.05.Both EMP and LMP models differentiated BEOT from MEOT, with an area under the ROC curve (AUC) of 0.855 (95% CI, 0.795-0.915) and 0.884 (95% CI, 0.831-0.938), respectively. The AUC of the LMP model was significantly higher than the radiologists' pooled AUC (0.884 vs. 0.797).The developed MICNN models can effectively differentiate BEOT from MEOT and the diagnostic performances (AUCs) were more superior than that of the radiologists' assessments.3 TECHNICAL EFFICACY STAGE: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dola完成签到,获得积分10
1秒前
2秒前
shuangfeng1853完成签到 ,获得积分10
2秒前
想人陪的马里奥完成签到,获得积分10
2秒前
蛋挞完成签到,获得积分10
3秒前
0077发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
6秒前
纯真的元风完成签到,获得积分10
6秒前
罗大大完成签到 ,获得积分10
6秒前
NexusExplorer应助耍酷的母鸡采纳,获得30
8秒前
8秒前
兴奋小丸子完成签到,获得积分10
8秒前
Yi羿完成签到 ,获得积分10
9秒前
Jane完成签到,获得积分10
9秒前
丘比特应助背后飞柏采纳,获得10
9秒前
王359发布了新的文献求助10
10秒前
hammer发布了新的文献求助10
12秒前
13秒前
xinanan发布了新的文献求助10
13秒前
14秒前
王359完成签到,获得积分10
15秒前
16秒前
Tethys完成签到 ,获得积分10
16秒前
温暖念柏发布了新的文献求助30
17秒前
刀刀发布了新的文献求助10
17秒前
17秒前
研友_VZG7GZ应助hammer采纳,获得10
17秒前
yurunxintian完成签到,获得积分10
18秒前
21秒前
22秒前
脑洞疼应助JJ采纳,获得10
23秒前
zlqq发布了新的文献求助10
23秒前
23秒前
lmj717完成签到,获得积分10
24秒前
24秒前
刀刀完成签到,获得积分10
25秒前
万能图书馆应助韵寒禾香采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286