MRI‐Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors

接收机工作特性 医学 有效扩散系数 曼惠特尼U检验 卷积神经网络 磁共振弥散成像 磁共振成像 放射科 核医学 病理 计算机科学 人工智能 内科学
作者
Junming Jian,Yongai Li,Wei Xia,He Zhang,Rui Zhang,Haiming Li,Xingyu Zhao,Shuhui Zhao,Jiayi Zhang,Songqi Cai,Xiaodong Wu,Xin Gao,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (1): 173-181 被引量:15
标识
DOI:10.1002/jmri.28008
摘要

Preoperative differentiation of borderline from malignant epithelial ovarian tumors (BEOT vs. MEOT) is challenging and can significantly impact surgical management.To develop a multiple instance convolutional neural network (MICNN) that can differentiate BEOT from MEOT, and to compare its diagnostic performance with that of radiologists.Retrospective study of eight clinical centers.Between January 2010 and June 2018, a total of 501 women (mean age, 48.93 ± 14.05 years) with histopathologically confirmed BEOT (N = 165) or MEOT (N = 336) were divided into the training (N = 342) and validation cohorts (N = 159).Three axial sequences from 1.5 or 3 T scanner were used: fast spin echo T2-weighted imaging with fat saturation (T2WI FS), echo planar diffusion-weighted imaging, and 2D volumetric interpolated breath-hold examination of contrast-enhanced T1-weighted imaging (CE-T1WI) with FS.Three monoparametric MICNN models were built based on T2WI FS, apparent diffusion coefficient map, and CE-T1WI. Based on these monoparametric models, we constructed an early multiparametric (EMP) model and a late multiparametric (LMP) model using early and late information fusion methods, respectively. The diagnostic performance of the models was evaluated using the receiver operating characteristic (ROC) curve and compared to the performance of six radiologists with varying levels of experience.We used DeLong test, chi-square test, Mann-Whitney U-test, and t-test, with significance level of 0.05.Both EMP and LMP models differentiated BEOT from MEOT, with an area under the ROC curve (AUC) of 0.855 (95% CI, 0.795-0.915) and 0.884 (95% CI, 0.831-0.938), respectively. The AUC of the LMP model was significantly higher than the radiologists' pooled AUC (0.884 vs. 0.797).The developed MICNN models can effectively differentiate BEOT from MEOT and the diagnostic performances (AUCs) were more superior than that of the radiologists' assessments.3 TECHNICAL EFFICACY STAGE: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
buuyoo完成签到,获得积分10
1秒前
科研通AI5应助魏煜佳采纳,获得10
1秒前
LLxiaolong完成签到,获得积分10
1秒前
2秒前
2秒前
巨噬细胞A完成签到,获得积分10
2秒前
2秒前
我要读博士完成签到 ,获得积分10
2秒前
xxq完成签到,获得积分20
2秒前
福气小姐完成签到 ,获得积分10
2秒前
搜集达人应助jjy采纳,获得10
3秒前
3秒前
郑总完成签到,获得积分10
3秒前
CipherSage应助马尼拉采纳,获得10
3秒前
SCI完成签到 ,获得积分10
4秒前
5秒前
healer发布了新的文献求助10
5秒前
123完成签到,获得积分20
6秒前
李健的小迷弟应助yili采纳,获得10
6秒前
L.完成签到,获得积分10
6秒前
木子发布了新的文献求助10
6秒前
威武诺言发布了新的文献求助10
6秒前
科研通AI5应助孙二二采纳,获得10
6秒前
6秒前
英姑应助rookie_b0采纳,获得10
7秒前
毛慢慢发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
kangkang完成签到,获得积分10
8秒前
丘比特应助东风第一枝采纳,获得10
8秒前
8秒前
丰知然应助normankasimodo采纳,获得10
9秒前
黑森林发布了新的文献求助30
9秒前
hu970发布了新的文献求助10
9秒前
9秒前
俭朴夜雪发布了新的文献求助30
9秒前
林上草应助lzj001983采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759