MRI‐Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors

接收机工作特性 医学 有效扩散系数 曼惠特尼U检验 卷积神经网络 磁共振弥散成像 磁共振成像 放射科 核医学 病理 计算机科学 人工智能 内科学
作者
Junming Jian,Yongai Li,Wei Xia,He Zhang,Rui Zhang,Haiming Li,Xingyu Zhao,Shuhui Zhao,Jiayi Zhang,Songqi Cai,Xiaodong Wu,Xin Gao,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (1): 173-181 被引量:15
标识
DOI:10.1002/jmri.28008
摘要

Preoperative differentiation of borderline from malignant epithelial ovarian tumors (BEOT vs. MEOT) is challenging and can significantly impact surgical management.To develop a multiple instance convolutional neural network (MICNN) that can differentiate BEOT from MEOT, and to compare its diagnostic performance with that of radiologists.Retrospective study of eight clinical centers.Between January 2010 and June 2018, a total of 501 women (mean age, 48.93 ± 14.05 years) with histopathologically confirmed BEOT (N = 165) or MEOT (N = 336) were divided into the training (N = 342) and validation cohorts (N = 159).Three axial sequences from 1.5 or 3 T scanner were used: fast spin echo T2-weighted imaging with fat saturation (T2WI FS), echo planar diffusion-weighted imaging, and 2D volumetric interpolated breath-hold examination of contrast-enhanced T1-weighted imaging (CE-T1WI) with FS.Three monoparametric MICNN models were built based on T2WI FS, apparent diffusion coefficient map, and CE-T1WI. Based on these monoparametric models, we constructed an early multiparametric (EMP) model and a late multiparametric (LMP) model using early and late information fusion methods, respectively. The diagnostic performance of the models was evaluated using the receiver operating characteristic (ROC) curve and compared to the performance of six radiologists with varying levels of experience.We used DeLong test, chi-square test, Mann-Whitney U-test, and t-test, with significance level of 0.05.Both EMP and LMP models differentiated BEOT from MEOT, with an area under the ROC curve (AUC) of 0.855 (95% CI, 0.795-0.915) and 0.884 (95% CI, 0.831-0.938), respectively. The AUC of the LMP model was significantly higher than the radiologists' pooled AUC (0.884 vs. 0.797).The developed MICNN models can effectively differentiate BEOT from MEOT and the diagnostic performances (AUCs) were more superior than that of the radiologists' assessments.3 TECHNICAL EFFICACY STAGE: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaohua1203发布了新的文献求助10
刚刚
xxquinuan发布了新的文献求助10
刚刚
深情安青应助栾花花采纳,获得10
1秒前
刘47完成签到,获得积分20
2秒前
陈一晨111完成签到 ,获得积分10
3秒前
鸭梨发布了新的文献求助10
3秒前
dyyisash完成签到 ,获得积分10
3秒前
3秒前
jacobian完成签到,获得积分10
3秒前
慕青应助xiaoniu采纳,获得10
4秒前
4秒前
4秒前
云淡风轻完成签到,获得积分10
4秒前
鲁啊鲁完成签到 ,获得积分10
4秒前
陈梦完成签到,获得积分10
5秒前
王高山发布了新的文献求助10
5秒前
Ava应助Gavin采纳,获得10
6秒前
HH发布了新的文献求助10
6秒前
杨帆完成签到,获得积分10
7秒前
球子哇咔咔完成签到 ,获得积分10
8秒前
华仔应助xxquinuan采纳,获得10
9秒前
catincafe完成签到,获得积分10
9秒前
9秒前
老胡完成签到,获得积分10
10秒前
10秒前
10秒前
骐骥完成签到,获得积分10
10秒前
尊敬雨灵完成签到,获得积分10
10秒前
CodeCraft应助炖地瓜采纳,获得10
10秒前
彭于晏应助东风压倒西风采纳,获得10
11秒前
11秒前
我是老大应助静仰星空采纳,获得10
12秒前
llt完成签到,获得积分10
12秒前
13秒前
NexusExplorer应助RTena.采纳,获得10
13秒前
sun完成签到,获得积分10
14秒前
guihai发布了新的文献求助10
14秒前
wjx发布了新的文献求助10
14秒前
小马发布了新的文献求助10
15秒前
高高高发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393