MRI‐Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors

接收机工作特性 医学 有效扩散系数 曼惠特尼U检验 卷积神经网络 磁共振弥散成像 磁共振成像 放射科 核医学 病理 计算机科学 人工智能 内科学
作者
Junming Jian,Yongai Li,Wei Xia,He Zhang,Rui Zhang,Haiming Li,Xingyu Zhao,Shuhui Zhao,Jiayi Zhang,Songqi Cai,Xiaodong Wu,Xin Gao,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (1): 173-181 被引量:15
标识
DOI:10.1002/jmri.28008
摘要

Preoperative differentiation of borderline from malignant epithelial ovarian tumors (BEOT vs. MEOT) is challenging and can significantly impact surgical management.To develop a multiple instance convolutional neural network (MICNN) that can differentiate BEOT from MEOT, and to compare its diagnostic performance with that of radiologists.Retrospective study of eight clinical centers.Between January 2010 and June 2018, a total of 501 women (mean age, 48.93 ± 14.05 years) with histopathologically confirmed BEOT (N = 165) or MEOT (N = 336) were divided into the training (N = 342) and validation cohorts (N = 159).Three axial sequences from 1.5 or 3 T scanner were used: fast spin echo T2-weighted imaging with fat saturation (T2WI FS), echo planar diffusion-weighted imaging, and 2D volumetric interpolated breath-hold examination of contrast-enhanced T1-weighted imaging (CE-T1WI) with FS.Three monoparametric MICNN models were built based on T2WI FS, apparent diffusion coefficient map, and CE-T1WI. Based on these monoparametric models, we constructed an early multiparametric (EMP) model and a late multiparametric (LMP) model using early and late information fusion methods, respectively. The diagnostic performance of the models was evaluated using the receiver operating characteristic (ROC) curve and compared to the performance of six radiologists with varying levels of experience.We used DeLong test, chi-square test, Mann-Whitney U-test, and t-test, with significance level of 0.05.Both EMP and LMP models differentiated BEOT from MEOT, with an area under the ROC curve (AUC) of 0.855 (95% CI, 0.795-0.915) and 0.884 (95% CI, 0.831-0.938), respectively. The AUC of the LMP model was significantly higher than the radiologists' pooled AUC (0.884 vs. 0.797).The developed MICNN models can effectively differentiate BEOT from MEOT and the diagnostic performances (AUCs) were more superior than that of the radiologists' assessments.3 TECHNICAL EFFICACY STAGE: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
听话的晓夏完成签到,获得积分10
1秒前
哔哔完成签到,获得积分10
2秒前
在水一方应助包妹采纳,获得10
2秒前
4秒前
5秒前
6秒前
HEIKU应助mmlikeu采纳,获得10
7秒前
haipronl完成签到,获得积分10
8秒前
TingWan发布了新的文献求助10
8秒前
wanci应助余进步采纳,获得10
9秒前
浊酒完成签到,获得积分20
9秒前
BigBadWolf发布了新的文献求助10
9秒前
10秒前
10秒前
时泰发布了新的文献求助10
10秒前
瞿访云发布了新的文献求助10
10秒前
搜集达人应助白凉鞋采纳,获得10
11秒前
Akim应助喷泡的兔子采纳,获得30
11秒前
小夏完成签到,获得积分10
12秒前
12秒前
Shirley给奈奈iii的求助进行了留言
13秒前
wanci应助专一的万怨采纳,获得10
13秒前
王提发布了新的文献求助10
13秒前
武迪完成签到,获得积分10
13秒前
licheng发布了新的文献求助30
15秒前
室内设计发布了新的文献求助10
15秒前
12rcli发布了新的文献求助10
16秒前
16秒前
游标卡尺完成签到,获得积分20
16秒前
耍酷蛋挞完成签到,获得积分10
17秒前
22完成签到,获得积分10
18秒前
勤奋的PRUNUS完成签到,获得积分10
18秒前
18秒前
zy大章鱼完成签到,获得积分10
19秒前
19秒前
英姑应助kyttytk采纳,获得10
19秒前
包妹完成签到,获得积分10
20秒前
彭珊发布了新的文献求助30
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847