材料科学
电容
电极
剥脱关节
光电子学
离子
纳米技术
超短脉冲
量子电容
密度泛函理论
电化学
化学物理
石墨烯
化学
光学
物理
计算化学
物理化学
有机化学
激光器
作者
Wenshu Chen,Jiajun Gu,Qinglei Liu,Mengzhao Yang,Cheng Zhan,Xining Zang,Tuan Anh Pham,Guang‐Xiang Liu,Wang Zhang,Di Zhang,Bruce Dunn,Yinmin Wang
标识
DOI:10.1038/s41565-021-01020-0
摘要
Dense, thick, but fast-ion-conductive electrodes are critical yet challenging components of ultrafast electrochemical capacitors with high volumetric power/energy densities1-4. Here we report an exfoliation-fragmentation-restacking strategy towards thickness-adjustable (1.5‒24.0 μm) dense electrode films of restacked two-dimensional 1T-MoS2 quantum sheets. These films bear the unique architecture of an exceptionally high density of narrow (sub-1.2 nm) and ultrashort (~6.1 nm) hydrophobic nanochannels for confinement ion transport. Among them, 14-μm-thick films tested at 2,000 mV s-1 can deliver not only a high areal capacitance of 0.63 F cm-2 but also a volumetric capacitance of 437 F cm-3 that is one order of magnitude higher than that of other electrodes. Density functional theory and ab initio molecular dynamics simulations suggest that both hydration and nanoscale channels play crucial roles in enabling ultrafast ion transport and enhanced charge storage. This work provides a versatile strategy for generating rapid ion transport channels in thick but dense films for energy storage and filtration applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI