🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

IRANet: Identity-relevance aware representation for cloth-changing person re-identification

计算机科学 身份(音乐) 人工智能 相关性(法律) 鉴定(生物学) 光学(聚焦) 背景(考古学) 主管(地质) 任务(项目管理) 代表(政治) 计算机视觉 不相交集 特征(语言学) 模式识别(心理学) 数学 地理 法学 管理 考古 哲学 经济 政治学 地质学 物理 光学 地貌学 组合数学 政治 生物 植物 语言学 声学
作者
Wei Shi,Hong Liu,Mengyuan Liu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:117: 104335-104335 被引量:22
标识
DOI:10.1016/j.imavis.2021.104335
摘要

• The IRANet is proposed to address cloth-changing person re-identification task. • A more reliable cue is introduced by mining the identity information from head. • A human head detection module is designed to localize the human head area. • A head-guided attention module is used to highlight the head embedding. • The proposed method achieves higher matching rates than the competing methods. Existing person re-identification methods mainly focus on searching the target person across disjoint camera views in a short period of time. With this setting, these methods rely on the assumption that both query and gallery images of the same person have the same clothing. To tackle the challenges of clothing changes over a long duration, this paper proposes an identity-relevance aware neural network (IRANet) for cloth-changing person re-identification. Specifically, a human head detection module is designed to localize the human head part with the help of the human parsing estimation. The detected human head part contains abundant identity information, including facial features and head type. Then, raw person images in conjunction with detected head areas are respectively transformed into feature representation with the feed-forward network. The learned features of raw person images contain more attributes of global context, meanwhile the learned features of head areas contain more identity-relevance attributes. Finally, a head-guided attention module is employed to guide the global features learned by raw person images to focus more on the identity-relevance head areas. The proposed method achieves mAP accuracy of 25.4% on the Celeb-reID-light dataset, 19.0% on the Celeb-reID dataset, and 53.0% (Cloth-changing setting) on the PRCC dataset, which shows the superiority of our approach for the cloth-changing person re-identification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
5秒前
柏礼沐发布了新的文献求助10
5秒前
9秒前
wyr完成签到,获得积分10
9秒前
活力紫菜完成签到,获得积分20
9秒前
9秒前
9秒前
领导范儿应助丢丢银采纳,获得10
9秒前
dzx发布了新的文献求助20
10秒前
11秒前
CodeCraft应助淡然篮球采纳,获得10
12秒前
13秒前
13秒前
13秒前
uu发布了新的文献求助10
13秒前
科研通AI5应助123的321采纳,获得10
14秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Jiao发布了新的文献求助10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
续续完成签到,获得积分10
16秒前
111应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
乌龟娟应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599581
求助须知:如何正确求助?哪些是违规求助? 3168344
关于积分的说明 9557023
捐赠科研通 2874701
什么是DOI,文献DOI怎么找? 1578246
邀请新用户注册赠送积分活动 742034
科研通“疑难数据库(出版商)”最低求助积分说明 725042