Electronically and Geometrically Modified Single‐Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction

催化作用 材料科学 限制 氧还原反应 纳米颗粒 Atom(片上系统) 氧还原 金属 电子结构 氧气 氧原子 纳米技术 工作(物理) 热稳定性 结晶学 化学工程 物理化学 计算化学 电化学 化学 热力学 分子 冶金 有机化学 物理 嵌入式系统 工程类 机械工程 计算机科学 电极
作者
Shu‐Na Zhao,Jun‐Kang Li,Rui Wang,Jinmeng Cai,Shuang‐Quan Zang
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (5): e2107291-e2107291 被引量:244
标识
DOI:10.1002/adma.202107291
摘要

Abstract Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助30
1秒前
13223456发布了新的文献求助10
2秒前
小巧风华发布了新的文献求助10
4秒前
frr发布了新的文献求助10
4秒前
橙橙发布了新的文献求助10
4秒前
8秒前
复杂的盼柳应助哦豁采纳,获得10
8秒前
9秒前
kryptonite发布了新的文献求助10
9秒前
11秒前
慕青应助小巧风华采纳,获得10
11秒前
11秒前
13223456完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
中微子发布了新的文献求助10
13秒前
守夜人完成签到,获得积分10
14秒前
天真的红酒完成签到,获得积分10
15秒前
nonosense发布了新的文献求助10
16秒前
紫熊发布了新的文献求助20
17秒前
19秒前
20秒前
共享精神应助王昭采纳,获得10
21秒前
sevenhill应助Christina采纳,获得10
22秒前
丘比特应助zhangxin采纳,获得10
22秒前
shirelylee发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
Jiang完成签到,获得积分10
28秒前
29秒前
30秒前
小马甲应助zhj采纳,获得10
30秒前
30秒前
30秒前
30秒前
传奇3应助饼干玮玮采纳,获得10
31秒前
31秒前
冷艳的火龙果完成签到,获得积分10
31秒前
31秒前
bkagyin应助Haijiao采纳,获得10
33秒前
laohu发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425617
求助须知:如何正确求助?哪些是违规求助? 4539576
关于积分的说明 14168879
捐赠科研通 4457194
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435376
关于科研通互助平台的介绍 1412836