催化作用
氟
碳纤维
微型多孔材料
吸附
材料科学
质子交换膜燃料电池
比表面积
兴奋剂
化学工程
活性炭
打赌理论
无机化学
化学
有机化学
冶金
复合材料
工程类
复合数
光电子学
作者
Xiafang Tao,Ruihu Lu,Lingmei Ni,Vladislav Gridin,Samir H. Al‐Hilfi,Zijie Qiu,Yan Zhao,Ulrike I. Kramm,Yazhou Zhou,Kläus Müllen
出处
期刊:Materials horizons
[The Royal Society of Chemistry]
日期:2021-11-09
卷期号:9 (1): 417-424
被引量:47
摘要
As the alternatives to expensive Pt-based materials for the oxygen reduction reaction (ORR), iron/nitrogen co-doped carbon catalysts (FeNC) with dense FeNx active sites are promising candidates to promote the commercialization of proton exchange membrane fuel cells. Herein, we report a synthetic approach using perfluorotetradecanoic acid (PFTA)-modified metal-organic frameworks as precursors for the synthesis of fluorine-doped FeNC (F-FeNC) with improved ORR performance. The utilization of PFTA surfactants causes profound changes of the catalyst structure including F-doping into graphitic carbon, increased micropore surface area and Brunauer-Emmett-Teller (BET) surface area (up to 1085 m2 g-1), as well as dense FeNx sites. The F-FeNC catalyst exhibits an improved ORR activity with a high E1/2 of 0.83 V (VS. RHE) compared to the pristine FeNC material (E1/2 = 0.80 V). A fast decay occurs in the first 10 000 potential cycles for the F-FeNC catalyst, but high durability is still maintained up to another 50 000 cycles. Density functional theory calculations reveal that the strongly withdrawing fluorine atoms doped on the graphitic carbon can optimize the electronic structure of the FeNx active center and decrease the adsorption energy of ORR intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI