Adaptive multiple second-order synchrosqueezing wavelet transform and its application in wind turbine gearbox fault diagnosis

瞬时相位 计算机科学 小波变换 小波 连续小波变换 涡轮机 时频分析 能量(信号处理) 信号(编程语言) 平滑的 算法 离散小波变换 数学 人工智能 工程类 计算机视觉 统计 滤波器(信号处理) 机械工程 程序设计语言
作者
Zhaohong Yu,Cancan Yi,Xiangjun Chen,Tao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (1): 015110-015110 被引量:22
标识
DOI:10.1088/1361-6501/ac38ee
摘要

Abstract Wind turbines usually operate in harsh environments and in working conditions of variable speed, which easily causes their key components such as gearboxes to fail. The gearbox vibration signal of a wind turbine has nonstationary characteristics, and the existing time-frequency (TF) analysis (TFA) methods have some problems such as insufficient concentration of TF energy. In order to obtain a more apparent and more congregated time-frequency representation (TFR), this paper proposes a new TFA method, namely adaptive multiple second-order synchrosqueezing wavelet transform (AMWSST2). Firstly, a short-time window is innovatively introduced on the foundation of classical continuous wavelet transform, and the window width is adaptively optimized by using the center frequency and scale factor. After that, a smoothing process is carried out between different segments to eliminate the discontinuity and thus adaptive wavelet transform is generated. Then, on the basis of the theoretical framework of synchrosqueezing transform and accurate instantaneous frequency estimation by the utilization of second-order local demodulation operator, adaptive second-order synchrosqueezing wavelet transform (AWSST2) is formed. Considering that the quality of actual TFA is greatly disturbed by noise components, through performing multiple synchrosqueezing operations, the congregation of TFR energy is further improved, and finally, the AMWSST2 algorithm studied in this paper is proposed. Since synchrosqueezing operations are performed only in the frequency direction, this method AMWSST2 allows the signal to be perfectly reconstructed. For the verification of its effectiveness, this paper applies it to the processing of the vibration signal of the gearbox of a 750 kW wind turbine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳岳岳发布了新的文献求助10
刚刚
小王时完成签到,获得积分10
刚刚
科研通AI2S应助平淡凝竹采纳,获得10
1秒前
terry发布了新的文献求助10
1秒前
Littboshi发布了新的文献求助50
2秒前
糟糕的颜完成签到 ,获得积分10
3秒前
项人发布了新的文献求助10
3秒前
tangyu12发布了新的文献求助10
6秒前
wanci应助茶米采纳,获得10
6秒前
朴实颤发布了新的文献求助10
7秒前
7秒前
善学以致用应助meng采纳,获得10
7秒前
山茶完成签到 ,获得积分20
7秒前
lkkkkkk完成签到,获得积分20
8秒前
9秒前
星辰大海应助ljh采纳,获得10
9秒前
DHY发布了新的文献求助30
9秒前
xinxin发布了新的文献求助10
9秒前
9秒前
可靠的安寒完成签到,获得积分10
10秒前
鲤鱼翼完成签到 ,获得积分10
10秒前
Vannie完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
星辰大海应助Ashore采纳,获得10
12秒前
12秒前
rengar完成签到,获得积分10
12秒前
王诗翔完成签到,获得积分10
12秒前
13秒前
14秒前
ppppp发布了新的文献求助10
14秒前
14秒前
ljh发布了新的文献求助10
14秒前
CodeCraft应助杜晓倩采纳,获得10
14秒前
smottom应助Rixxed采纳,获得10
14秒前
Ava应助自然的书瑶采纳,获得30
15秒前
小耳朵完成签到,获得积分20
15秒前
研小白完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187