Adaptive multiple second-order synchrosqueezing wavelet transform and its application in wind turbine gearbox fault diagnosis

瞬时相位 计算机科学 小波变换 小波 连续小波变换 涡轮机 时频分析 能量(信号处理) 信号(编程语言) 平滑的 算法 离散小波变换 数学 人工智能 工程类 计算机视觉 统计 滤波器(信号处理) 机械工程 程序设计语言
作者
Zhaohong Yu,Cancan Yi,Xiangjun Chen,Tao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (1): 015110-015110 被引量:22
标识
DOI:10.1088/1361-6501/ac38ee
摘要

Abstract Wind turbines usually operate in harsh environments and in working conditions of variable speed, which easily causes their key components such as gearboxes to fail. The gearbox vibration signal of a wind turbine has nonstationary characteristics, and the existing time-frequency (TF) analysis (TFA) methods have some problems such as insufficient concentration of TF energy. In order to obtain a more apparent and more congregated time-frequency representation (TFR), this paper proposes a new TFA method, namely adaptive multiple second-order synchrosqueezing wavelet transform (AMWSST2). Firstly, a short-time window is innovatively introduced on the foundation of classical continuous wavelet transform, and the window width is adaptively optimized by using the center frequency and scale factor. After that, a smoothing process is carried out between different segments to eliminate the discontinuity and thus adaptive wavelet transform is generated. Then, on the basis of the theoretical framework of synchrosqueezing transform and accurate instantaneous frequency estimation by the utilization of second-order local demodulation operator, adaptive second-order synchrosqueezing wavelet transform (AWSST2) is formed. Considering that the quality of actual TFA is greatly disturbed by noise components, through performing multiple synchrosqueezing operations, the congregation of TFR energy is further improved, and finally, the AMWSST2 algorithm studied in this paper is proposed. Since synchrosqueezing operations are performed only in the frequency direction, this method AMWSST2 allows the signal to be perfectly reconstructed. For the verification of its effectiveness, this paper applies it to the processing of the vibration signal of the gearbox of a 750 kW wind turbine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
Gabriel完成签到,获得积分10
2秒前
123456完成签到 ,获得积分10
3秒前
天真依玉完成签到,获得积分10
4秒前
Cyber_relic完成签到,获得积分10
9秒前
Horizon完成签到 ,获得积分10
13秒前
伶俐海安完成签到 ,获得积分10
13秒前
14秒前
酱紫完成签到 ,获得积分10
14秒前
手可摘棉花完成签到,获得积分10
15秒前
Vaseegara完成签到 ,获得积分10
15秒前
16秒前
舒服的初蓝完成签到,获得积分10
17秒前
亮总完成签到 ,获得积分10
18秒前
yinlao完成签到,获得积分0
18秒前
忍冬完成签到,获得积分10
21秒前
SuYan完成签到 ,获得积分10
22秒前
Huang完成签到 ,获得积分0
23秒前
24秒前
24秒前
UniTTEC9560完成签到,获得积分10
24秒前
小文完成签到,获得积分10
25秒前
飘逸初夏完成签到,获得积分20
26秒前
11111111111111完成签到,获得积分10
28秒前
飘逸初夏发布了新的文献求助10
29秒前
lixoii完成签到 ,获得积分10
31秒前
暴躁的橘子完成签到 ,获得积分10
32秒前
34秒前
35秒前
奥丁不言语完成签到 ,获得积分10
35秒前
隐形的语海完成签到,获得积分10
35秒前
35秒前
Connor完成签到,获得积分10
35秒前
橘子味完成签到 ,获得积分10
37秒前
curiosity发布了新的文献求助10
38秒前
餐巾纸完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603500
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854100
捐赠科研通 4693213
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806