Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network

计算机科学 特征学习 稳健性(进化) 图形 人工智能 卷积神经网络 深度学习 机器学习 理论计算机科学 生物化学 化学 基因
作者
Yifan Zhu,Qika Lin,Hao Lü,Kaize Shi,Donglei Liu,James Chambua,Shanshan Wan,Zhendong Niu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4178-4189 被引量:19
标识
DOI:10.1109/tkde.2021.3125424
摘要

Massive Open Online Courses (MOOCs) have received unprecedented attention, in which learners can obtain a large number of learning objects anytime and anywhere. However, the increasing information overload on MOOCs inhibits the appropriate choice of learning objects by learners, leading to a low efficiency and high dropout rates in the learning process of this human-computer interaction scenario. E-learning recommendation systems have been studied to present learning objects directly to learners, thereby relieving such problem. However, in MOOC platforms, recommendation network structures which can selectively extract implicit feature such as heterogeneous learning preference and knowledge organization of learning objects are still not comprehensively studied. To this end, we propose a learning object recommendation model based on heterogeneous learning behavior and knowledge graph. To generate a unified representation of each entity and relation, we first propose an Attentive Composition based Graph Convolutional Network (ACGCN). By introducing an attention mechanism, information is amplified when updating the representation of the heterogeneous graph, which eliminates the impact of noise and improves the robustness of the model. Then, a Dense Feature based Operation-Aware Network (DFOAN) is utilized to capture implicit and complex learners’ interactive behaviors, and to further provide a recommendation. Experimental results using two real-world datasets revealed that our proposed model has the best precision, recall, F1, and accuracy scores compared to those of several existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小樱颖子完成签到 ,获得积分10
1秒前
小二郎应助苗条傲蕾采纳,获得10
1秒前
1秒前
英姑应助班里采纳,获得10
1秒前
我下载不了论文啊完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
陈雨发布了新的文献求助10
8秒前
qiuli完成签到,获得积分10
8秒前
酷波er应助Kilig采纳,获得30
8秒前
无极微光应助废寝忘食采纳,获得40
9秒前
12秒前
12秒前
诗亭完成签到,获得积分10
12秒前
刘英岑完成签到,获得积分10
15秒前
王誉霖完成签到,获得积分10
15秒前
15秒前
阳光he完成签到,获得积分10
16秒前
班里发布了新的文献求助10
16秒前
啦啦啦123发布了新的文献求助10
17秒前
废寝忘食完成签到,获得积分10
17秒前
dandan完成签到,获得积分10
18秒前
20秒前
22秒前
啦啦啦123完成签到,获得积分10
22秒前
冷傲迎梦完成签到,获得积分20
25秒前
25秒前
ysk完成签到,获得积分10
26秒前
王辰宁完成签到,获得积分10
27秒前
小树完成签到 ,获得积分10
27秒前
gomm完成签到,获得积分10
27秒前
哈哈哈完成签到,获得积分10
28秒前
Rae完成签到,获得积分10
29秒前
冷傲迎梦发布了新的文献求助10
29秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
迷路的糜完成签到,获得积分10
33秒前
Owen应助米热采纳,获得10
34秒前
35秒前
隐形曼青应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365