Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network

计算机科学 特征学习 稳健性(进化) 图形 人工智能 卷积神经网络 深度学习 机器学习 理论计算机科学 生物化学 基因 化学
作者
Yifan Zhu,Qika Lin,Hao Lü,Kaize Shi,Donglei Liu,James Chambua,Shanshan Wan,Zhendong Niu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4178-4189 被引量:19
标识
DOI:10.1109/tkde.2021.3125424
摘要

Massive Open Online Courses (MOOCs) have received unprecedented attention, in which learners can obtain a large number of learning objects anytime and anywhere. However, the increasing information overload on MOOCs inhibits the appropriate choice of learning objects by learners, leading to a low efficiency and high dropout rates in the learning process of this human-computer interaction scenario. E-learning recommendation systems have been studied to present learning objects directly to learners, thereby relieving such problem. However, in MOOC platforms, recommendation network structures which can selectively extract implicit feature such as heterogeneous learning preference and knowledge organization of learning objects are still not comprehensively studied. To this end, we propose a learning object recommendation model based on heterogeneous learning behavior and knowledge graph. To generate a unified representation of each entity and relation, we first propose an Attentive Composition based Graph Convolutional Network (ACGCN). By introducing an attention mechanism, information is amplified when updating the representation of the heterogeneous graph, which eliminates the impact of noise and improves the robustness of the model. Then, a Dense Feature based Operation-Aware Network (DFOAN) is utilized to capture implicit and complex learners’ interactive behaviors, and to further provide a recommendation. Experimental results using two real-world datasets revealed that our proposed model has the best precision, recall, F1, and accuracy scores compared to those of several existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助rong采纳,获得10
刚刚
3386582258应助LG采纳,获得10
刚刚
pipi1412发布了新的文献求助10
1秒前
BowieHuang应助Yee采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
曲江离发布了新的文献求助10
4秒前
4秒前
4秒前
c7发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
相金鹏完成签到,获得积分10
7秒前
whitebird完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
10秒前
含蓄馒头发布了新的文献求助10
10秒前
11秒前
高贵振家发布了新的文献求助10
11秒前
11秒前
凡事多发布了新的文献求助10
11秒前
yaocong发布了新的文献求助10
11秒前
科研通AI6.1应助曲江离采纳,获得10
11秒前
VivianGao发布了新的文献求助10
12秒前
dodo完成签到,获得积分10
12秒前
cye关闭了cye文献求助
12秒前
13秒前
四十完成签到 ,获得积分10
13秒前
1234完成签到 ,获得积分10
13秒前
土土力口发布了新的文献求助10
16秒前
pipi1412完成签到,获得积分10
16秒前
李子敬发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
一一完成签到,获得积分10
21秒前
上官若男应助my采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751949
求助须知:如何正确求助?哪些是违规求助? 5471765
关于积分的说明 15372432
捐赠科研通 4891194
什么是DOI,文献DOI怎么找? 2630170
邀请新用户注册赠送积分活动 1578376
关于科研通互助平台的介绍 1534352