Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network

计算机科学 特征学习 稳健性(进化) 图形 人工智能 卷积神经网络 深度学习 机器学习 理论计算机科学 生物化学 基因 化学
作者
Yifan Zhu,Qika Lin,Hao Lü,Kaize Shi,Donglei Liu,James Chambua,Shanshan Wan,Zhendong Niu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4178-4189 被引量:19
标识
DOI:10.1109/tkde.2021.3125424
摘要

Massive Open Online Courses (MOOCs) have received unprecedented attention, in which learners can obtain a large number of learning objects anytime and anywhere. However, the increasing information overload on MOOCs inhibits the appropriate choice of learning objects by learners, leading to a low efficiency and high dropout rates in the learning process of this human-computer interaction scenario. E-learning recommendation systems have been studied to present learning objects directly to learners, thereby relieving such problem. However, in MOOC platforms, recommendation network structures which can selectively extract implicit feature such as heterogeneous learning preference and knowledge organization of learning objects are still not comprehensively studied. To this end, we propose a learning object recommendation model based on heterogeneous learning behavior and knowledge graph. To generate a unified representation of each entity and relation, we first propose an Attentive Composition based Graph Convolutional Network (ACGCN). By introducing an attention mechanism, information is amplified when updating the representation of the heterogeneous graph, which eliminates the impact of noise and improves the robustness of the model. Then, a Dense Feature based Operation-Aware Network (DFOAN) is utilized to capture implicit and complex learners’ interactive behaviors, and to further provide a recommendation. Experimental results using two real-world datasets revealed that our proposed model has the best precision, recall, F1, and accuracy scores compared to those of several existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXLTX发布了新的文献求助10
1秒前
栗子完成签到,获得积分10
2秒前
2秒前
自由灵枫发布了新的文献求助10
2秒前
善学以致用应助Youth采纳,获得10
3秒前
4秒前
思源应助暴躁的书本采纳,获得30
5秒前
爆米花应助深情的笑寒采纳,获得10
5秒前
浮生完成签到 ,获得积分10
5秒前
shinyar完成签到 ,获得积分10
6秒前
七月发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
嗯哼应助科研通管家采纳,获得30
7秒前
积极慕梅应助科研通管家采纳,获得20
7秒前
bkagyin应助科研通管家采纳,获得30
7秒前
大模型应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
积极慕梅应助科研通管家采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
嗯哼应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助OYRKYORK采纳,获得10
8秒前
自由灵枫完成签到,获得积分10
10秒前
朴实天寿完成签到,获得积分10
11秒前
gxqqqqqqq发布了新的文献求助10
13秒前
13秒前
菜菜发布了新的文献求助10
13秒前
Sun发布了新的文献求助10
13秒前
14秒前
14秒前
SciGPT应助taotao采纳,获得10
17秒前
real季氢发布了新的文献求助10
17秒前
俏皮诺言发布了新的文献求助10
17秒前
dxy完成签到,获得积分10
18秒前
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198