计算机科学
特征学习
稳健性(进化)
图形
人工智能
卷积神经网络
深度学习
机器学习
理论计算机科学
生物化学
基因
化学
作者
Yifan Zhu,Qika Lin,Hao Lü,Kaize Shi,Donglei Liu,James Chambua,Shanshan Wan,Zhendong Niu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering
[Institute of Electrical and Electronics Engineers]
日期:2023-04-01
卷期号:35 (4): 4178-4189
被引量:19
标识
DOI:10.1109/tkde.2021.3125424
摘要
Massive Open Online Courses (MOOCs) have received unprecedented attention, in which learners can obtain a large number of learning objects anytime and anywhere. However, the increasing information overload on MOOCs inhibits the appropriate choice of learning objects by learners, leading to a low efficiency and high dropout rates in the learning process of this human-computer interaction scenario. E-learning recommendation systems have been studied to present learning objects directly to learners, thereby relieving such problem. However, in MOOC platforms, recommendation network structures which can selectively extract implicit feature such as heterogeneous learning preference and knowledge organization of learning objects are still not comprehensively studied. To this end, we propose a learning object recommendation model based on heterogeneous learning behavior and knowledge graph. To generate a unified representation of each entity and relation, we first propose an Attentive Composition based Graph Convolutional Network (ACGCN). By introducing an attention mechanism, information is amplified when updating the representation of the heterogeneous graph, which eliminates the impact of noise and improves the robustness of the model. Then, a Dense Feature based Operation-Aware Network (DFOAN) is utilized to capture implicit and complex learners’ interactive behaviors, and to further provide a recommendation. Experimental results using two real-world datasets revealed that our proposed model has the best precision, recall, F1, and accuracy scores compared to those of several existing models.
科研通智能强力驱动
Strongly Powered by AbleSci AI