Representation Learning on Knowledge Graphs for Node Importance Estimation

计算机科学 页面排名 统计关系学习 编码器 人工智能 理论计算机科学 杠杆(统计) 图形 数据挖掘 特征学习 知识图 关系数据库 操作系统
作者
Han Huang,Leilei Sun,Bowen Du,Chuanren Liu,Weifeng Lv,Hui Xiong
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 646-655 被引量:14
标识
DOI:10.1145/3447548.3467342
摘要

In knowledge graphs, there are usually different types of nodes, multiple heterogeneous relations, and numerous attributes of nodes and edges, which impose the challenges on the task of Node Importance Estimation (NIE). Indeed, existing NIE approaches, such as PageRank (PR) and Node-Degree (ND), are not designed for handling knowledge graphs with the rich information related with these multifarious nodes and edges. To this end, in this paper, we propose a representation learning framework to leverage the rich information inherent in these multifarious nodes and edges for improving node importance estimation in knowledge graphs. Specifically, we provide a Relational Graph Transformer Network (RGTN), where a relational graph transformer is first proposed to propagate node information with the consideration of semantic predicate representations. Here, the assumption is that different predicates may have distinct effects on the transmission of node importance. Then, two separate encoders are designed to capture both the structural and semantic information of nodes respectively, and a co-attention module is developed to fuse the two separate representations of nodes. Next, an attention-based aggregation module is adopted to map the representations of nodes to their importance values. In addition, a learning-to-rank loss is designed to ensure that the learned representations can be aware of the relative ranking information among nodes. Finally, extensive experiments have been conducted on real-world knowledge graphs, and the results illustrate that our model outperforms the existing methods consistently for all the evaluation metrics. The code and the data are available at https://github.com/GRAPH-0/RGTN-NIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaojiao完成签到 ,获得积分10
1秒前
1秒前
闪闪小小完成签到,获得积分10
2秒前
核桃应助东风徐来采纳,获得50
2秒前
LaTeXer应助东风徐来采纳,获得50
2秒前
xiaxianong发布了新的文献求助10
3秒前
博修发布了新的文献求助10
4秒前
领导范儿应助Emma采纳,获得10
4秒前
Rocky完成签到 ,获得积分10
5秒前
美丽的依霜完成签到 ,获得积分10
7秒前
yu给yu的求助进行了留言
7秒前
echo完成签到,获得积分10
7秒前
SYLH应助英勇凝旋采纳,获得10
7秒前
嘭嘭嘭完成签到,获得积分10
8秒前
景穆完成签到,获得积分10
8秒前
杳鸢应助典雅的毛巾采纳,获得10
8秒前
bkagyin应助shanshanlaichi采纳,获得10
8秒前
春天完成签到 ,获得积分10
8秒前
8秒前
9秒前
加菲猫发布了新的文献求助20
9秒前
华仔应助风中的小白菜采纳,获得10
9秒前
10秒前
10秒前
哇哇哇哇我应助半斤采纳,获得20
10秒前
11秒前
ypz完成签到,获得积分10
12秒前
12秒前
姜菡发布了新的文献求助10
12秒前
爱吃香菜完成签到 ,获得积分10
12秒前
594zqz完成签到,获得积分10
13秒前
天天快乐应助遇晴采纳,获得10
14秒前
苹果骑士完成签到,获得积分10
14秒前
椰子狗完成签到,获得积分10
15秒前
许一完成签到,获得积分10
15秒前
打打应助李晓凤采纳,获得10
16秒前
sby19发布了新的文献求助30
16秒前
台灯没电了完成签到,获得积分10
16秒前
氯化钡完成签到 ,获得积分10
16秒前
啥也不会完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993