What Deception Tasks Used in the Lab Really Do: Systematic Review and Meta-analysis of Ecological Validity of fMRI Deception Tasks

荟萃分析 认知 社会心理学 测谎
作者
Maribel Delgado-Herrera,Azalea Reyes-Aguilar,Magda Giordano
出处
期刊:Neuroscience [Elsevier]
卷期号:468: 88-109 被引量:2
标识
DOI:10.1016/j.neuroscience.2021.06.005
摘要

Interpretation of the neural findings of deception without considering the ecological validity of the experimental tasks could lead to biased conclusions. In this study we classified the experimental tasks according to their inclusion of three essential components required for ecological validity: intention to lie, social interaction and motivation. First, we carried out a systematic review to categorize fMRI deception tasks and to weigh the degree of ecological validity of each one. Second, we performed a meta-analysis to identify if each type of task involves a different neural substrate and to distinguish the neurocognitive contribution of each component of ecological validity essential to deception. We detected six categories of deception tasks. Intention to lie was the component least frequently included, followed by social interaction. Monetary reward was the most frequent motivator. The results of the meta-analysis, including 59 contrasts, revealed that intention to lie is associated with activation in the left lateral occipital cortex (superior division) whereas the left angular gyrus and right inferior frontal gyrus (IFG) are engaged during lying under instructions. Additionally, the right IFG appears to participate in the social aspect of lying including simulated and real interactions. We found no effect of monetary reward in our analysis. Finally, tasks with high ecological validity recruited fewer brain areas (right insular cortex and bilateral anterior cingulate cortex (ACC)) compared to less ecological tasks, perhaps because they are more natural and realistic, and engage a wide network of brain mechanisms, as opposed to specific tasks that demand more centralized processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助结实曼凡采纳,获得10
刚刚
桂花酒酿完成签到,获得积分10
3秒前
无情的小鸽子完成签到 ,获得积分10
5秒前
6秒前
吕如音完成签到,获得积分20
6秒前
NexusExplorer应助科研圣体采纳,获得10
8秒前
9秒前
连牙蓝上了吗完成签到 ,获得积分10
9秒前
10秒前
10秒前
小花完成签到 ,获得积分10
11秒前
Taisheng完成签到,获得积分10
11秒前
14秒前
15秒前
15秒前
15秒前
小宫同学发布了新的文献求助10
15秒前
江新儿发布了新的文献求助10
15秒前
LaLaC完成签到,获得积分10
17秒前
拼搏的潘子完成签到,获得积分10
17秒前
共享精神应助研友_nEjYyZ采纳,获得10
17秒前
易三木完成签到,获得积分10
18秒前
可靠寒松发布了新的文献求助10
18秒前
张益权完成签到,获得积分10
18秒前
CodeCraft应助风中天宇采纳,获得10
18秒前
归尘发布了新的文献求助30
19秒前
19秒前
奥沙利楠发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
美羊羊完成签到,获得积分10
21秒前
21秒前
虚幻凡柔完成签到,获得积分10
21秒前
Dr-张显华发布了新的文献求助10
22秒前
消消乐发布了新的文献求助10
22秒前
文艺代灵完成签到,获得积分10
23秒前
科技墨完成签到,获得积分20
24秒前
科研通AI5应助风风采纳,获得10
25秒前
duke发布了新的文献求助10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084