亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SymReg-GAN: Symmetric Image Registration with Generative Adversarial Networks

人工智能 图像配准 计算机科学 计算机视觉 转化(遗传学) 图像(数学) 一致性(知识库) 几何变换 模式识别(心理学) 生物化学 基因 化学
作者
Yuanjie Zheng,Xiaodan Sui,Yanyun Jiang,Tontong Che,Shaoting Zhang,Jie Yang,Hongsheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tpami.2021.3083543
摘要

Symmetric image registration estimates bi-directional spatial transformations between images while enforcing an inverse-consistency. Its capability of eliminating bias introduced inevitably by generic single-directional image registration allows more precise analysis in different interdisciplinary applications of image registration, e.g., computational anatomy and shape analysis. However, most existing symmetric registration techniques especially for multimodal images are limited by low speed from the commonly-used iterative optimization, hardship in exploring inter-modality relations or high labor cost for labeling data. We propose SymReg-GAN to shatter these limits, which is a novel generative adversarial networks (GAN) based approach to symmetric image registration. We formulate symmetric registration of unimodal/multimodal images as a conditional GAN and train it with a semi-supervised strategy. The registration symmetry is realized by introducing a loss for encouraging that the cycle composed of the geometric transformation from one image to another and its reverse should bring an image back. The semi-supervised learning enables both the precious labeled data and large amounts of unlabeled data to be fully exploited. Experimental results from six public brain magnetic resonance imaging (MRI) datasets and 1 our own computed tomography (CT) and MRI dataset demonstrate the superiority of SymReg-GAN to several existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇嫣完成签到 ,获得积分10
1秒前
3秒前
6秒前
lixiangyi1发布了新的文献求助10
12秒前
22秒前
轨迹应助Shuo Yang采纳,获得30
36秒前
40秒前
AX完成签到,获得积分10
48秒前
科研通AI6.1应助炙热成仁采纳,获得10
1分钟前
1分钟前
1分钟前
内秀发布了新的文献求助10
1分钟前
111完成签到 ,获得积分20
1分钟前
太阳当空照完成签到 ,获得积分10
1分钟前
内秀完成签到,获得积分10
1分钟前
LJL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
瓶子发布了新的文献求助30
1分钟前
聪明夏波完成签到 ,获得积分10
1分钟前
清逸发布了新的文献求助10
1分钟前
传奇3应助baozeNG采纳,获得10
1分钟前
bbhk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
11完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助11采纳,获得10
2分钟前
领导范儿应助文静人达采纳,获得10
2分钟前
汉堡包应助壮观的抽屉采纳,获得10
2分钟前
XYF发布了新的文献求助10
2分钟前
2分钟前
max发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763854
求助须知:如何正确求助?哪些是违规求助? 5544969
关于积分的说明 15405553
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635539
邀请新用户注册赠送积分活动 1583703
关于科研通互助平台的介绍 1538795