SymReg-GAN: Symmetric Image Registration with Generative Adversarial Networks

人工智能 图像配准 计算机科学 计算机视觉 转化(遗传学) 图像(数学) 一致性(知识库) 几何变换 模式识别(心理学) 生物化学 基因 化学
作者
Yuanjie Zheng,Xiaodan Sui,Yanyun Jiang,Tontong Che,Shaoting Zhang,Jie Yang,Hongsheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tpami.2021.3083543
摘要

Symmetric image registration estimates bi-directional spatial transformations between images while enforcing an inverse-consistency. Its capability of eliminating bias introduced inevitably by generic single-directional image registration allows more precise analysis in different interdisciplinary applications of image registration, e.g., computational anatomy and shape analysis. However, most existing symmetric registration techniques especially for multimodal images are limited by low speed from the commonly-used iterative optimization, hardship in exploring inter-modality relations or high labor cost for labeling data. We propose SymReg-GAN to shatter these limits, which is a novel generative adversarial networks (GAN) based approach to symmetric image registration. We formulate symmetric registration of unimodal/multimodal images as a conditional GAN and train it with a semi-supervised strategy. The registration symmetry is realized by introducing a loss for encouraging that the cycle composed of the geometric transformation from one image to another and its reverse should bring an image back. The semi-supervised learning enables both the precious labeled data and large amounts of unlabeled data to be fully exploited. Experimental results from six public brain magnetic resonance imaging (MRI) datasets and 1 our own computed tomography (CT) and MRI dataset demonstrate the superiority of SymReg-GAN to several existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun完成签到,获得积分10
刚刚
Ava应助熊猫采纳,获得10
刚刚
GPTea应助快乐小白采纳,获得30
1秒前
jia完成签到 ,获得积分10
1秒前
2秒前
赘婿应助li1_李采纳,获得10
2秒前
fim461847完成签到,获得积分20
3秒前
FashionBoy应助jzc0531采纳,获得10
3秒前
RLV关闭了RLV文献求助
4秒前
CJY发布了新的文献求助20
4秒前
5秒前
Lucas应助南巷采纳,获得10
5秒前
Cloud完成签到,获得积分10
5秒前
lyx完成签到 ,获得积分10
5秒前
5秒前
李垣锦发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
yy发布了新的文献求助10
8秒前
AN应助fim461847采纳,获得30
8秒前
不爱科研关注了科研通微信公众号
9秒前
CJY完成签到,获得积分10
10秒前
11秒前
白开水发布了新的文献求助10
11秒前
11秒前
12秒前
hulili发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
情怀应助安静的画笔采纳,获得10
14秒前
14秒前
iris发布了新的文献求助10
14秒前
内向的浩宇完成签到,获得积分10
15秒前
星星发布了新的文献求助10
15秒前
yy发布了新的文献求助10
15秒前
超帅亦绿发布了新的文献求助10
16秒前
明理绮兰关注了科研通微信公众号
16秒前
量子星尘发布了新的文献求助10
17秒前
仁爱糖豆发布了新的文献求助10
18秒前
科目三应助小哇采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720909
求助须知:如何正确求助?哪些是违规求助? 5263062
关于积分的说明 15292658
捐赠科研通 4870174
什么是DOI,文献DOI怎么找? 2615270
邀请新用户注册赠送积分活动 1565197
关于科研通互助平台的介绍 1522273