亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SymReg-GAN: Symmetric Image Registration with Generative Adversarial Networks

人工智能 图像配准 计算机科学 计算机视觉 转化(遗传学) 图像(数学) 一致性(知识库) 几何变换 模式识别(心理学) 生物化学 基因 化学
作者
Yuanjie Zheng,Xiaodan Sui,Yanyun Jiang,Tontong Che,Shaoting Zhang,Jie Yang,Hongsheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tpami.2021.3083543
摘要

Symmetric image registration estimates bi-directional spatial transformations between images while enforcing an inverse-consistency. Its capability of eliminating bias introduced inevitably by generic single-directional image registration allows more precise analysis in different interdisciplinary applications of image registration, e.g., computational anatomy and shape analysis. However, most existing symmetric registration techniques especially for multimodal images are limited by low speed from the commonly-used iterative optimization, hardship in exploring inter-modality relations or high labor cost for labeling data. We propose SymReg-GAN to shatter these limits, which is a novel generative adversarial networks (GAN) based approach to symmetric image registration. We formulate symmetric registration of unimodal/multimodal images as a conditional GAN and train it with a semi-supervised strategy. The registration symmetry is realized by introducing a loss for encouraging that the cycle composed of the geometric transformation from one image to another and its reverse should bring an image back. The semi-supervised learning enables both the precious labeled data and large amounts of unlabeled data to be fully exploited. Experimental results from six public brain magnetic resonance imaging (MRI) datasets and 1 our own computed tomography (CT) and MRI dataset demonstrate the superiority of SymReg-GAN to several existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
松松完成签到 ,获得积分10
42秒前
46秒前
53秒前
QCB完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zjq完成签到 ,获得积分0
1分钟前
Yoanna应助科研通管家采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
3分钟前
lezbj99发布了新的文献求助10
3分钟前
4分钟前
失眠思远发布了新的文献求助10
4分钟前
袁建波完成签到 ,获得积分10
4分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得30
5分钟前
7分钟前
7分钟前
guoguo发布了新的文献求助30
7分钟前
sunrise发布了新的文献求助10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
dormraider完成签到,获得积分10
7分钟前
葛怀锐完成签到 ,获得积分10
8分钟前
8分钟前
senpl发布了新的文献求助10
8分钟前
Yoanna应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
合不着完成签到 ,获得积分10
9分钟前
Krim完成签到 ,获得积分0
10分钟前
SimonShaw完成签到,获得积分10
10分钟前
大胆的碧菡完成签到,获得积分10
10分钟前
嘟嘟嘟cpu完成签到,获得积分10
10分钟前
Yoanna应助科研通管家采纳,获得10
11分钟前
Yoanna应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957940
求助须知:如何正确求助?哪些是违规求助? 4219168
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190267
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625