已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SymReg-GAN: Symmetric Image Registration with Generative Adversarial Networks

人工智能 图像配准 计算机科学 计算机视觉 转化(遗传学) 图像(数学) 一致性(知识库) 几何变换 模式识别(心理学) 生物化学 基因 化学
作者
Yuanjie Zheng,Xiaodan Sui,Yanyun Jiang,Tontong Che,Shaoting Zhang,Jie Yang,Hongsheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tpami.2021.3083543
摘要

Symmetric image registration estimates bi-directional spatial transformations between images while enforcing an inverse-consistency. Its capability of eliminating bias introduced inevitably by generic single-directional image registration allows more precise analysis in different interdisciplinary applications of image registration, e.g., computational anatomy and shape analysis. However, most existing symmetric registration techniques especially for multimodal images are limited by low speed from the commonly-used iterative optimization, hardship in exploring inter-modality relations or high labor cost for labeling data. We propose SymReg-GAN to shatter these limits, which is a novel generative adversarial networks (GAN) based approach to symmetric image registration. We formulate symmetric registration of unimodal/multimodal images as a conditional GAN and train it with a semi-supervised strategy. The registration symmetry is realized by introducing a loss for encouraging that the cycle composed of the geometric transformation from one image to another and its reverse should bring an image back. The semi-supervised learning enables both the precious labeled data and large amounts of unlabeled data to be fully exploited. Experimental results from six public brain magnetic resonance imaging (MRI) datasets and 1 our own computed tomography (CT) and MRI dataset demonstrate the superiority of SymReg-GAN to several existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RC_Wang发布了新的文献求助10
刚刚
1秒前
2秒前
琳毓完成签到,获得积分10
2秒前
Atlantic发布了新的文献求助10
2秒前
Jasper应助chenyuns采纳,获得10
2秒前
3秒前
Owen应助001采纳,获得10
3秒前
4秒前
4秒前
4秒前
zzzdx发布了新的文献求助10
6秒前
科研小白完成签到,获得积分20
7秒前
古再丽发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
8秒前
无花果应助初夏采纳,获得10
9秒前
9秒前
10秒前
10秒前
CipherSage应助Bonaventure采纳,获得10
11秒前
Atlantic完成签到,获得积分10
11秒前
11秒前
快乐吗猪发布了新的文献求助10
13秒前
13秒前
13秒前
星辰大海应助清爽冬莲采纳,获得10
15秒前
16秒前
llj关闭了llj文献求助
17秒前
争争向荣发布了新的文献求助50
18秒前
19秒前
19秒前
20秒前
20秒前
21秒前
猫橘汽水完成签到,获得积分10
21秒前
可爱的函函应助青羽采纳,获得10
22秒前
李健发布了新的文献求助10
22秒前
痴情的白易完成签到 ,获得积分10
22秒前
朴实子骞完成签到 ,获得积分10
24秒前
大马哈鱼发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810