SymReg-GAN: Symmetric Image Registration with Generative Adversarial Networks

人工智能 图像配准 计算机科学 计算机视觉 转化(遗传学) 图像(数学) 一致性(知识库) 几何变换 模式识别(心理学) 生物化学 基因 化学
作者
Yuanjie Zheng,Xiaodan Sui,Yanyun Jiang,Tontong Che,Shaoting Zhang,Jie Yang,Hongsheng Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tpami.2021.3083543
摘要

Symmetric image registration estimates bi-directional spatial transformations between images while enforcing an inverse-consistency. Its capability of eliminating bias introduced inevitably by generic single-directional image registration allows more precise analysis in different interdisciplinary applications of image registration, e.g., computational anatomy and shape analysis. However, most existing symmetric registration techniques especially for multimodal images are limited by low speed from the commonly-used iterative optimization, hardship in exploring inter-modality relations or high labor cost for labeling data. We propose SymReg-GAN to shatter these limits, which is a novel generative adversarial networks (GAN) based approach to symmetric image registration. We formulate symmetric registration of unimodal/multimodal images as a conditional GAN and train it with a semi-supervised strategy. The registration symmetry is realized by introducing a loss for encouraging that the cycle composed of the geometric transformation from one image to another and its reverse should bring an image back. The semi-supervised learning enables both the precious labeled data and large amounts of unlabeled data to be fully exploited. Experimental results from six public brain magnetic resonance imaging (MRI) datasets and 1 our own computed tomography (CT) and MRI dataset demonstrate the superiority of SymReg-GAN to several existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
告白气球完成签到,获得积分10
1秒前
Dexter完成签到 ,获得积分10
1秒前
Mario发布了新的文献求助30
2秒前
LXiao完成签到,获得积分10
2秒前
2秒前
2秒前
俏皮卿发布了新的文献求助10
3秒前
曾经寄真完成签到,获得积分10
3秒前
隐形曼青应助乐意你采纳,获得10
3秒前
4秒前
今后应助yang采纳,获得10
4秒前
5秒前
5秒前
花开富贵发布了新的文献求助20
5秒前
mouxq发布了新的文献求助10
5秒前
告白气球发布了新的文献求助10
6秒前
lyt完成签到,获得积分10
6秒前
6秒前
搜集达人应助Anson采纳,获得10
6秒前
7秒前
xhm发布了新的文献求助10
7秒前
领导范儿应助曾经寄真采纳,获得10
8秒前
田様应助不安豁采纳,获得10
8秒前
LMZ发布了新的文献求助10
8秒前
顾矜应助饮冰室的熊采纳,获得10
9秒前
轻松的雨文完成签到,获得积分10
9秒前
绵绵球应助星河采纳,获得20
9秒前
明亮的青旋完成签到 ,获得积分10
9秒前
10秒前
笑对人生完成签到,获得积分10
10秒前
刚得力完成签到,获得积分10
10秒前
10秒前
不想学习发布了新的文献求助10
10秒前
求知若渴完成签到,获得积分10
12秒前
烦人应助小乐子采纳,获得10
12秒前
13秒前
王小茗发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813