人类多任务处理
概化理论
计算机科学
一般化
标记数据
分割
人工智能
领域(数学分析)
监督学习
半监督学习
多任务学习
桥(图论)
机器学习
任务(项目管理)
人工神经网络
心理学
数学分析
统计
数学
管理
经济
认知心理学
医学
内科学
作者
Ayaan Haque,Abdullah-Al-Zubaer Imran,Adam Wang,Demetri Terzopoulos
出处
期刊:International Symposium on Biomedical Imaging
日期:2021-04-13
被引量:8
标识
DOI:10.1109/isbi48211.2021.9434167
摘要
Semi-supervised learning from limited quantities of labeled data, an alternative to fully-supervised schemes, benefits by maximizing knowledge gains from copious unlabeled data. Furthermore, learning multiple tasks within the same model improves model generalizability. We propose MultiMix, a novel multitask learning model that jointly learns disease classification and anatomical segmentation in a sparingly supervised manner, while preserving explainability through bridge saliency between the two tasks. Extensive experimentation with varied quantities of labeled data in the training sets affirms the effectiveness of our multitasking model in classifying pneumonia and segmenting lungs from chest X-ray images. Moreover, both in-domain and cross-domain evaluations across the tasks further showcase the potential of our model to adapt to challenging generalization scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI