Dynamic Low-Light Image Enhancement for Object Detection via End-to-End Training

目标检测 计算机科学 端到端原则 人工智能 计算机视觉 培训(气象学) 对象(语法) 图像增强 图像(数学) 模式识别(心理学) 地理 气象学
作者
Haifeng Guo,Tong Lü,Yirui Wu
标识
DOI:10.1109/icpr48806.2021.9412802
摘要

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results. However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
perdgs完成签到,获得积分10
2秒前
CodeCraft应助从容的方盒采纳,获得10
3秒前
虚幻靖易完成签到,获得积分10
3秒前
4秒前
巫马尔槐完成签到,获得积分10
4秒前
sen驳回了Zx_1993应助
4秒前
落后丸子完成签到,获得积分10
5秒前
许诺完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
8秒前
oldhope发布了新的文献求助10
9秒前
123完成签到,获得积分10
10秒前
Kiry完成签到 ,获得积分10
10秒前
书是人类进步的阶梯完成签到 ,获得积分10
10秒前
pangguanzhe发布了新的文献求助10
12秒前
12秒前
pengivy完成签到,获得积分10
13秒前
哈利波特完成签到,获得积分10
14秒前
丘比特应助miao采纳,获得10
15秒前
羽羊周周完成签到,获得积分20
15秒前
15秒前
华盛顿关注了科研通微信公众号
15秒前
科研通AI6应助lankeren采纳,获得10
17秒前
时迁完成签到 ,获得积分10
18秒前
18秒前
领导范儿应助胡萝卜叶子采纳,获得10
18秒前
wanci应助害羞的诺言采纳,获得10
19秒前
21秒前
kate完成签到,获得积分10
22秒前
ECHO发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
朱春阳发布了新的文献求助10
26秒前
26秒前
moon发布了新的文献求助30
27秒前
BowieHuang应助从容的方盒采纳,获得10
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241