Dynamic Low-Light Image Enhancement for Object Detection via End-to-End Training

目标检测 计算机科学 端到端原则 人工智能 计算机视觉 培训(气象学) 对象(语法) 图像增强 图像(数学) 模式识别(心理学) 地理 气象学
作者
Haifeng Guo,Tong Lü,Yirui Wu
标识
DOI:10.1109/icpr48806.2021.9412802
摘要

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results. However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nVqwxL发布了新的文献求助10
刚刚
czwu完成签到,获得积分10
1秒前
1秒前
1秒前
fly完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
笑破果果完成签到 ,获得积分10
3秒前
3秒前
3秒前
Yael发布了新的文献求助10
3秒前
ab完成签到,获得积分10
3秒前
sada发布了新的文献求助10
4秒前
啦啦啦啦发布了新的文献求助30
4秒前
田田发布了新的文献求助10
4秒前
lgz完成签到,获得积分10
4秒前
5秒前
liuk给liuk的求助进行了留言
7秒前
shy发布了新的文献求助10
7秒前
riverflowing发布了新的文献求助10
7秒前
kkk发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
无花果应助gongman采纳,获得10
9秒前
9秒前
Sherling发布了新的文献求助10
9秒前
Crazy_Runner发布了新的文献求助10
10秒前
李爱卿发布了新的文献求助20
10秒前
Ryun完成签到,获得积分10
10秒前
10秒前
slyhhk完成签到,获得积分20
11秒前
科研通AI2S应助sada采纳,获得10
12秒前
14秒前
W23发布了新的文献求助10
15秒前
萋萋完成签到,获得积分10
17秒前
18秒前
Zhu给Zhu的求助进行了留言
19秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574