Dynamic Low-Light Image Enhancement for Object Detection via End-to-End Training

目标检测 计算机科学 端到端原则 人工智能 计算机视觉 培训(气象学) 对象(语法) 图像增强 图像(数学) 模式识别(心理学) 地理 气象学
作者
Haifeng Guo,Tong Lü,Yirui Wu
标识
DOI:10.1109/icpr48806.2021.9412802
摘要

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results. However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容道罡完成签到,获得积分10
刚刚
dxdxb完成签到,获得积分10
刚刚
menghongmei完成签到 ,获得积分10
刚刚
酷波er应助羽柒er采纳,获得10
2秒前
嘿嘿发布了新的文献求助10
2秒前
2秒前
2秒前
zcy完成签到,获得积分10
3秒前
3秒前
王媛发布了新的文献求助10
3秒前
刘启迪完成签到,获得积分10
3秒前
4秒前
4秒前
嗨Honey完成签到 ,获得积分10
5秒前
5秒前
HotKid应助dingdind采纳,获得10
6秒前
Jun完成签到 ,获得积分10
6秒前
12345完成签到,获得积分10
6秒前
憨先生发布了新的文献求助10
6秒前
7秒前
7秒前
欣喜的伟泽完成签到,获得积分10
7秒前
小冉不熬夜完成签到 ,获得积分10
7秒前
zhoududu发布了新的文献求助10
8秒前
刘肖发布了新的文献求助10
8秒前
李健的小迷弟应助橙子采纳,获得10
8秒前
东北饿霸发布了新的文献求助40
8秒前
小冯完成签到 ,获得积分10
9秒前
9秒前
10秒前
张兮远发布了新的文献求助10
11秒前
12秒前
汉堡包应助吃猫的鱼采纳,获得10
12秒前
赘婿应助狗子爱吃桃桃采纳,获得10
12秒前
EricaLee9812发布了新的文献求助10
13秒前
帅气鹭洋发布了新的文献求助20
14秒前
阿柒完成签到,获得积分10
14秒前
14秒前
玊尔吡咯烷酮完成签到,获得积分10
15秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019