A deep learning model for detection and tracking in high-throughput images of organoid

类有机物 计算机科学 深度学习 帧速率 人工智能 跟踪(教育) 帧(网络) 计算机视觉 生物 神经科学 心理学 教育学 电信
作者
Xuesheng Bian,Gang Li,Cheng Wang,Weiquan Liu,Xiuhong Lin,Zexin Chen,Mancheung Cheung,Xiongbiao Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:134: 104490-104490 被引量:43
标识
DOI:10.1016/j.compbiomed.2021.104490
摘要

Organoid, an in vitro 3D culture, has extremely high similarity with its source organ or tissue, which creates a model in vitro that simulates the in vivo environment. Organoids have been extensively studied in cell biology, precision medicine, drug toxicity, efficacy tests, etc., which have been proven to have high research value. Periodic observation of organoids in microscopic images to obtain morphological or growth characteristics is essential for organoid research. It is difficult and time-consuming to perform manual screens for organoids, but there is no better solution in the prior art. In this paper, we established the first high-throughput organoid image dataset for organoids detection and tracking, which experienced experts annotate in detail. Moreover, we propose a novel deep neural network (DNN) that effectively detects organoids and dynamically tracks them throughout the entire culture. We divided our solution into two steps: First, the high-throughput sequential images are processed frame by frame to detect all organoids; Second, the similarities of the organoids in the adjacent frames are computed, and the organoids on the adjacent frames are matched in pairs. With the help of our proposed dataset, our model achieves organoids detection and tracking with fast speed and high accuracy, effectively reducing the burden on researchers. To our knowledge, this is the first exploration of applying deep learning to organoid tracking tasks. Experiments have demonstrated that our proposed method achieved satisfactory results on organoid detection and tracking, verifying the great potential of deep learning technology in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lilei完成签到 ,获得积分10
2秒前
毛豆发布了新的文献求助10
4秒前
4秒前
顾矜应助木木VV采纳,获得10
5秒前
LaTeXer应助乐观小之采纳,获得3000
6秒前
思源应助十一采纳,获得10
6秒前
虚幻初之发布了新的文献求助10
6秒前
7秒前
7秒前
传奇3应助开心的山兰采纳,获得10
7秒前
web123完成签到,获得积分10
8秒前
陈成发布了新的文献求助10
8秒前
meat12应助南辰采纳,获得10
8秒前
称心花生完成签到,获得积分10
8秒前
9秒前
xu完成签到,获得积分20
10秒前
星辰大海应助77采纳,获得10
11秒前
一一发布了新的文献求助10
12秒前
lizz发布了新的文献求助10
13秒前
千年一梦完成签到,获得积分10
13秒前
14秒前
14秒前
可爱的坤完成签到,获得积分10
15秒前
16秒前
16秒前
FashionBoy应助虚幻初之采纳,获得10
16秒前
传奇3应助harden9159采纳,获得10
16秒前
量子星尘发布了新的文献求助10
18秒前
青山发布了新的文献求助10
18秒前
18秒前
机会发布了新的文献求助10
19秒前
20秒前
方沅完成签到,获得积分10
20秒前
英俊的铭应助内向怀曼采纳,获得10
20秒前
ccjjpp1243完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
高分求助中
A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma 3000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032