Elastic FWI for orthorhombic media with lithologic constraints applied via machine learning

地质学 反演(地质) 方位角 算法 几何学 计算机科学 数学 地震学 构造学 构造盆地 古生物学
作者
Sagar Singh,Ilya Tsvankin,Ehsan Zabihi Naeini
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): R589-R602 被引量:13
标识
DOI:10.1190/geo2020-0512.1
摘要

Full-waveform inversion (FWI) of 3D wide-azimuth data for elastic orthorhombic media suffers from parameter trade-offs which cannot be overcome without constraining the model-updating procedure. We present an FWI methodology that incorporates geologic constraints to reduce the inversion nonlinearity and increase the resolution of parameter estimation for orthorhombic models. These constraints are obtained from well logs, which can provide rock-physics relationships for different geologic facies. Because the locations of the available well logs are usually sparse, a supervised machine-learning (ML) algorithm (Support Vector Machine) is employed to account for lateral heterogeneity in building the lithologic constraints. The advantages of the facies-based FWI are demonstrated on the modified SEG-EAGE 3D overthrust model, which is made orthorhombic with the symmetry planes that coincide with the Cartesian coordinate planes. We employ a velocity-based parameterization, whose suitability for FWI was studied using the radiation-pattern analysis. Application of the facies-based constraints substantially increases the resolution of the P- and S-wave vertical velocities ([Formula: see text], [Formula: see text], and [Formula: see text]) and, therefore, of the depth scale of the model. Improvements are also observed for the P-wave horizontal and normal-moveout velocities ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) and the S-wave horizontal velocity [Formula: see text]. However, the velocity [Formula: see text] that depends on Tsvankin’s parameter [Formula: see text] defined in the horizontal plane is not well recovered from the surface data. On the whole, the developed algorithm achieves a much higher spatial resolution compared to unconstrained FWI, even in the absence of recorded frequencies below 2 Hz.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qin希望应助风趣的老太采纳,获得10
1秒前
星辰大海应助风趣的老太采纳,获得10
1秒前
Fooou完成签到,获得积分10
1秒前
2秒前
香菜发布了新的文献求助10
3秒前
4秒前
我是老大应助Dskelf采纳,获得10
4秒前
feihu发布了新的文献求助10
6秒前
齐小齐发布了新的文献求助10
8秒前
9秒前
mumu完成签到,获得积分10
10秒前
lily发布了新的文献求助10
11秒前
在水一方应助外向的梦安采纳,获得10
12秒前
Colo完成签到,获得积分10
12秒前
桐桐应助geigeigei采纳,获得10
12秒前
12秒前
咕嘟咕嘟发布了新的文献求助10
13秒前
14秒前
14秒前
外向语蝶完成签到,获得积分10
14秒前
长歌完成签到,获得积分10
14秒前
15秒前
16秒前
於伟祺发布了新的文献求助10
17秒前
多情自古空余恨完成签到,获得积分10
17秒前
齐小齐完成签到,获得积分10
17秒前
18秒前
18秒前
88给88的求助进行了留言
18秒前
19秒前
英姑应助精明的天抒采纳,获得10
19秒前
geigeigei发布了新的文献求助10
20秒前
22秒前
快乐人杰完成签到,获得积分10
22秒前
syf发布了新的文献求助10
23秒前
jwq发布了新的文献求助10
23秒前
卓卓完成签到,获得积分10
24秒前
47吃不够yu完成签到,获得积分10
26秒前
27秒前
FERN0826发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589376
求助须知:如何正确求助?哪些是违规求助? 3157639
关于积分的说明 9516392
捐赠科研通 2860595
什么是DOI,文献DOI怎么找? 1571875
邀请新用户注册赠送积分活动 737583
科研通“疑难数据库(出版商)”最低求助积分说明 722405