Printed Honeycomb-Structured Reduced Graphene Oxide Film for Efficient and Continuous Evaporation-Driven Electricity Generation from Salt Solution

材料科学 功率密度 石墨烯 蒸发 海水 化学工程 发电 氧化物 纳米技术 功率(物理) 工艺工程 热力学 物理 工程类 冶金 海洋学 地质学
作者
Miao Wu,Meiwen Peng,Zhiqiang Liang,Yuanlan Liu,Bo Zhao,Dong Li,Yawen Wang,Junchang Zhang,Yinghui Sun,Lin Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (23): 26989-26997 被引量:59
标识
DOI:10.1021/acsami.1c04508
摘要

Water-evaporation-induced electricity generation provides an ideal strategy to solve growing energy demand and supply power for self-powered systems because of its advantages of a highly spontaneous process, continuous power generation, and low cost. However, the reported evaporation-induced generators are limited to working only in deionized (DI) water, leading to a low output power. Herein, we utilize a modified multiple ion mode to demonstrate that the streaming potential can be optimized in microchannels filled with salt solution and achieve an enhanced evaporation-induced output power in salt solution by a generator based on honeycomb-structured reduced graphene oxide (rGO) film with abundant interconnected microchannels. This generator enables an around 2-fold open-circuit voltage (Voc) and a 3.3-fold power density of 0.91 μW cm–2 in 0.6 M NaCl solution compared to that in DI water. Experiments evidence that the honeycomb structure with abundant interconnected microchannels plays a key role in achieving high and stable output power in salt solution because of its large specific surface area and excellent ion-exchange capacity. Notably, it can work at all times of day and night for more than 240 h in natural seawater, delivering a stable Voc of ∼0.83 V with a power density of 0.79 μW cm–2. This study expands a working solution for water-evaporation-induced electricity generation from DI water to natural seawater, advancing a great step toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHUHONGYAO发布了新的文献求助10
刚刚
1秒前
jhui23z发布了新的文献求助10
1秒前
zsy完成签到,获得积分10
5秒前
zychaos发布了新的文献求助30
7秒前
7秒前
7秒前
打打应助phoebe采纳,获得10
7秒前
8秒前
SJD完成签到,获得积分0
8秒前
capx完成签到,获得积分10
9秒前
爆米花应助想人陪的雨泽采纳,获得10
9秒前
李健应助WLWLW采纳,获得10
9秒前
NexusExplorer应助mnjknm采纳,获得10
10秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
满意易蓉完成签到,获得积分10
15秒前
15秒前
15秒前
天熙发布了新的文献求助10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295827
求助须知:如何正确求助?哪些是违规求助? 2931687
关于积分的说明 8453434
捐赠科研通 2604320
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661066
邀请新用户注册赠送积分活动 644023