训练集
计算机科学
集合(抽象数据类型)
试验装置
人工智能
情态动词
深度学习
数据集
考试(生物学)
机器学习
试验数据
语音识别
自然语言处理
古生物学
化学
高分子化学
程序设计语言
生物
作者
Yang Li,Zinc Zhang,Hutchin Huang
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:1
标识
DOI:10.48550/arxiv.2105.13132
摘要
Hateful content detection is one of the areas where deep learning can and should make a significant difference. The Hateful Memes Challenge from Facebook helps fulfill such potential by challenging the contestants to detect hateful speech in multi-modal memes using deep learning algorithms. In this paper, we utilize multi-modal, pre-trained models VilBERT and Visual BERT. We improved models' performance by adding training datasets generated from data augmentation. Enlarging the training data set helped us get a more than 2% boost in terms of AUROC with the Visual BERT model. Our approach achieved 0.7439 AUROC along with an accuracy of 0.7037 on the challenge's test set, which revealed remarkable progress.
科研通智能强力驱动
Strongly Powered by AbleSci AI