亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
23秒前
23秒前
31秒前
婉莹完成签到 ,获得积分0
36秒前
53秒前
1分钟前
af完成签到,获得积分10
1分钟前
1分钟前
婕仔发布了新的文献求助10
1分钟前
1分钟前
婕仔完成签到,获得积分10
1分钟前
花椰菜完成签到,获得积分20
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
科目三应助花椰菜采纳,获得10
1分钟前
2分钟前
2分钟前
花椰菜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
然463完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
小石头完成签到,获得积分10
4分钟前
小石头发布了新的文献求助10
4分钟前
4分钟前
wanci应助橙橙橙橙橙采纳,获得10
4分钟前
4分钟前
自信的冬日完成签到 ,获得积分10
4分钟前
lqhccww发布了新的文献求助10
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088