Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的秋天完成签到 ,获得积分10
刚刚
呱呱发布了新的文献求助10
刚刚
Jion完成签到,获得积分10
刚刚
于芋菊发布了新的文献求助10
1秒前
1秒前
dubhe发布了新的文献求助10
2秒前
0128lun完成签到,获得积分10
2秒前
2秒前
2秒前
共享精神应助静静采纳,获得10
2秒前
La-crazy发布了新的文献求助10
2秒前
3秒前
rosalieshi应助asdfg123采纳,获得30
3秒前
打打应助马小翠采纳,获得30
3秒前
Ostfang发布了新的文献求助10
3秒前
3秒前
jg发布了新的文献求助10
4秒前
峰宝宝完成签到,获得积分10
4秒前
机灵的白羊完成签到 ,获得积分10
5秒前
5秒前
----发布了新的文献求助10
5秒前
小螃蟹完成签到 ,获得积分10
5秒前
6秒前
pledge发布了新的文献求助10
6秒前
研友_Zlqx38完成签到,获得积分10
6秒前
科研通AI2S应助qy97采纳,获得10
7秒前
7秒前
7秒前
weita发布了新的文献求助10
8秒前
ivy0425完成签到,获得积分10
8秒前
rendong4009发布了新的文献求助30
8秒前
黑黑黑完成签到,获得积分10
9秒前
huoyunli完成签到,获得积分10
9秒前
bkagyin应助霸气的梦露采纳,获得10
9秒前
Kyogoku完成签到,获得积分10
10秒前
Henry完成签到 ,获得积分10
11秒前
橙子完成签到,获得积分10
12秒前
洋洋爱吃枣完成签到 ,获得积分10
12秒前
chenyinglin发布了新的文献求助10
12秒前
白色之牙发布了新的文献求助30
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151134
求助须知:如何正确求助?哪些是违规求助? 2802621
关于积分的说明 7849140
捐赠科研通 2460009
什么是DOI,文献DOI怎么找? 1309425
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601757