已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少许发布了新的文献求助10
刚刚
啊哦完成签到,获得积分10
1秒前
脑洞疼应助赵睿老婆采纳,获得10
2秒前
4秒前
genius完成签到 ,获得积分10
5秒前
瘦瘦的送终完成签到,获得积分10
5秒前
5秒前
7秒前
10秒前
Sixth_GOD发布了新的文献求助10
11秒前
biubiu完成签到,获得积分10
12秒前
犹豫的芝麻完成签到 ,获得积分10
14秒前
myg123完成签到 ,获得积分10
17秒前
htzyc完成签到,获得积分10
17秒前
二零二六发布了新的文献求助10
20秒前
Akim应助松树顶上鹧鸪鸣采纳,获得10
21秒前
22秒前
24秒前
sunshine发布了新的文献求助10
29秒前
shunlimaomi完成签到 ,获得积分10
30秒前
少许完成签到,获得积分10
31秒前
JamesPei应助sunshine采纳,获得10
34秒前
orixero应助二零二六采纳,获得30
34秒前
Mushiyu完成签到 ,获得积分10
38秒前
39秒前
科研通AI6应助悲伤牛蛙采纳,获得10
40秒前
47秒前
biubiu发布了新的文献求助10
47秒前
婼汐完成签到 ,获得积分10
50秒前
ljh024完成签到,获得积分10
52秒前
Haoru应助冷静新烟采纳,获得20
53秒前
科研通AI6应助chen采纳,获得10
54秒前
滴嘟滴嘟完成签到 ,获得积分10
54秒前
enchanted发布了新的文献求助10
55秒前
obsession完成签到 ,获得积分10
1分钟前
领导范儿应助biubiu采纳,获得10
1分钟前
王雪晗完成签到 ,获得积分10
1分钟前
科研通AI6应助zhdhh采纳,获得10
1分钟前
儒雅HR完成签到,获得积分10
1分钟前
张帅奔完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258