Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ferry发布了新的文献求助10
刚刚
清脆糖豆发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
吴旭发布了新的文献求助10
3秒前
火山完成签到,获得积分10
3秒前
史超发布了新的文献求助10
3秒前
非凡梦完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助诗歌节公社采纳,获得10
6秒前
wangye发布了新的文献求助10
6秒前
6秒前
wanci应助不知道采纳,获得10
6秒前
马老师发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
yunshan发布了新的文献求助10
9秒前
打打应助肆_采纳,获得10
10秒前
温婉的怀寒完成签到,获得积分20
10秒前
烟花应助三次方采纳,获得10
12秒前
choaiho关注了科研通微信公众号
13秒前
14秒前
14秒前
15秒前
15秒前
不知道完成签到,获得积分20
15秒前
Orange应助霸气映之采纳,获得10
15秒前
16秒前
wangye完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
wanci发布了新的文献求助10
18秒前
古日方原完成签到,获得积分10
18秒前
Yimi发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031