亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得30
7秒前
YifanWang应助科研通管家采纳,获得10
7秒前
20秒前
22秒前
wzq发布了新的文献求助50
24秒前
25秒前
wzq完成签到,获得积分10
32秒前
GLv完成签到,获得积分20
50秒前
不攻自破发布了新的文献求助10
51秒前
1分钟前
Palpitate发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Shoujiang完成签到 ,获得积分10
1分钟前
Akim应助Achange采纳,获得10
1分钟前
1分钟前
领导范儿应助不攻自破采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
不攻自破发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
bluebell发布了新的文献求助10
2分钟前
3分钟前
胡萝卜完成签到,获得积分10
3分钟前
Achange发布了新的文献求助10
3分钟前
小飞鸡发布了新的文献求助10
3分钟前
猪仔5号完成签到 ,获得积分10
3分钟前
Achange完成签到,获得积分10
3分钟前
小飞鸡完成签到,获得积分10
3分钟前
xicifish完成签到,获得积分10
3分钟前
xicifish发布了新的文献求助10
3分钟前
欧皇完成签到,获得积分20
4分钟前
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
韦老虎完成签到,获得积分20
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214