Unsupervised image translation

计算机科学 人工智能 图像翻译 翻译(生物学) 机器翻译 图像(数学) 模式识别(心理学) 自然语言处理
作者
Resales,Achan,Frey
出处
期刊:International Conference on Computer Vision 卷期号:: 472-478 被引量:51
标识
DOI:10.1109/iccv.2003.1238384
摘要

An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y/spl bsol/X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based nonphotorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助hhh采纳,获得10
2秒前
在水一方应助DandanHan0916采纳,获得10
3秒前
4秒前
丹丹发布了新的文献求助10
5秒前
6秒前
6秒前
还不过程发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
Pessica完成签到,获得积分10
10秒前
11秒前
科研通AI6应助HHKY采纳,获得10
12秒前
12秒前
Pessica发布了新的文献求助10
13秒前
13秒前
许子健发布了新的文献求助10
14秒前
15秒前
老婶子完成签到,获得积分0
16秒前
如意秋柳发布了新的文献求助10
16秒前
123发布了新的文献求助10
16秒前
19秒前
23秒前
Brightan发布了新的文献求助10
23秒前
24秒前
科目三应助cc采纳,获得30
24秒前
脑洞疼应助南淮采纳,获得10
25秒前
欢喜的之瑶完成签到,获得积分10
26秒前
IM发布了新的文献求助10
26秒前
共享精神应助凉小远采纳,获得10
27秒前
LLL发布了新的文献求助10
28秒前
29秒前
29秒前
浮游应助123456采纳,获得10
29秒前
Rener完成签到,获得积分20
30秒前
能HJY发布了新的文献求助10
32秒前
Rener发布了新的文献求助10
34秒前
科研通AI6应助LLL采纳,获得10
36秒前
无花果应助开心的凝荷采纳,获得10
36秒前
天才小仙女完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534