Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach

强化学习 计算机科学 自动化 认知 人机交互 信息物理系统 人工智能 工业工程 机器学习 知识管理 工程类 机械工程 生物 操作系统 神经科学
作者
Pai Zheng,Liqiao Xia,Chengxi Li,Xinyu Li,Bufan Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:61: 16-26 被引量:133
标识
DOI:10.1016/j.jmsy.2021.08.002
摘要

Abstract Empowered by the advanced cognitive computing, industrial Internet-of-Things, and data analytics techniques, today’s smart manufacturing systems are ever-increasingly equipped with cognitive capabilities, towards an emerging Self-X cognitive manufacturing network with higher level of automation. Nevertheless, to our best knowledge, the readiness of ‘Self-X’ levels (e.g., self-configuration, self-optimization, and self-adjust/adaptive/healing) is still in the infant stage. To pave its way, this work stepwise introduces an industrial knowledge graph (IKG)-based multi-agent reinforcement learning (MARL) method for achieving the Self-X cognitive manufacturing network. Firstly, an IKG should be formulated based on the extracted empirical knowledge and recognized patterns in the manufacturing process, by exploiting the massive human-generated and machine-sensed multimodal data. Then, a proposed graph neural network-based embedding algorithm can be performed based on a comprehensive understanding of the established IKG, to achieve semantic-based self-configurable solution searching and task decomposition. Moreover, a MARL-enabled decentralized system is presented to self-optimize the manufacturing process, and to further complement the IKG towards Self-X cognitive manufacturing network. An illustrative example of multi-robot reaching task is conducted lastly to validate the feasibility of the proposed approach. As an explorative study, limitations and future perspectives are also highlighted to attract more open discussions and in-depth research for ever smarter manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pny发布了新的文献求助10
刚刚
2秒前
迅速广缘完成签到,获得积分20
3秒前
HU发布了新的文献求助10
6秒前
6秒前
慕青应助鸿宇采纳,获得10
9秒前
9秒前
10秒前
11秒前
天明完成签到,获得积分10
12秒前
pny发布了新的文献求助10
12秒前
科研通AI2S应助guoyunlong采纳,获得10
13秒前
13秒前
14秒前
HU完成签到,获得积分20
14秒前
星你完成签到,获得积分10
14秒前
FG发布了新的文献求助10
15秒前
15秒前
CipherSage应助wwqdd采纳,获得10
16秒前
19秒前
20秒前
pny发布了新的文献求助10
20秒前
ding应助舒适访彤采纳,获得10
22秒前
22秒前
22秒前
黄小鸟2333完成签到,获得积分10
24秒前
24秒前
HM发布了新的文献求助10
25秒前
大方念云发布了新的文献求助20
25秒前
25秒前
鸿宇发布了新的文献求助10
26秒前
李思超发布了新的文献求助240
29秒前
谢言一发布了新的文献求助10
30秒前
pny发布了新的文献求助10
30秒前
七八九发布了新的文献求助10
30秒前
ding应助能干的孤丝采纳,获得10
31秒前
tzjz_zrz完成签到,获得积分10
31秒前
CipherSage应助王大禹采纳,获得20
34秒前
34秒前
yaoyh_gc完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557572
求助须知:如何正确求助?哪些是违规求助? 3132664
关于积分的说明 9398623
捐赠科研通 2832834
什么是DOI,文献DOI怎么找? 1557063
邀请新用户注册赠送积分活动 727072
科研通“疑难数据库(出版商)”最低求助积分说明 716184