Deep Learning-Based 2-D Frequency Estimation of Multiple Sinusoidals

计算机科学 人工智能 深度学习 估计 人工神经网络 模式识别(心理学) 语音识别
作者
Pingping Pan,Yunjian Zhang,Zhenmiao Deng,Qi Wei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5429-5440 被引量:4
标识
DOI:10.1109/tnnls.2021.3070707
摘要

Frequency estimation of 2-D multicomponent sinusoidal signals is a fundamental issue in the statistical signal processing community that arises in various disciplines. In this article, we extend the DeepFreq model by modifying its network architecture and apply it to 2-D signals. We name the proposed framework 2-D ResFreq. Compared with the original DeepFreq framework, the 2-D convolutional implementation of the matched filtering module facilitates the transformation from time-domain signals to frequency-domain signals and reduces the number of network parameters. The additional upsampling layer and stacked residual blocks are designed to perform superresolution. Moreover, we introduce frequency amplitude information into the optimization function to improve the amplitude accuracy. After training, the signals in the test set are forward-mapped to 2-D accurate and high-resolution frequency representations. Frequency and amplitude estimation are achieved by measuring the locations and strengths of the spectral peaks. We conduct numerical experiments to demonstrate the superior performance of the proposed architecture in terms of its superresolution capability and estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复方蛋酥卷完成签到,获得积分10
刚刚
隐形曼青应助swityha采纳,获得10
1秒前
烟花应助悦耳的镜子采纳,获得10
2秒前
柠檬汽水完成签到,获得积分10
2秒前
YUYU完成签到,获得积分10
2秒前
芙芙完成签到,获得积分10
2秒前
亮晶晶发布了新的文献求助10
2秒前
3秒前
Rickstein完成签到,获得积分10
3秒前
彭a发布了新的文献求助10
4秒前
难过的小甜瓜完成签到,获得积分10
5秒前
5秒前
汉堡包应助hdisyd采纳,获得10
6秒前
卓儿发布了新的文献求助10
7秒前
7秒前
8秒前
英俊的铭应助12采纳,获得10
8秒前
abjz发布了新的文献求助10
8秒前
9秒前
9秒前
Billy应助若眠采纳,获得30
9秒前
忐忑的雪糕完成签到 ,获得积分10
9秒前
10秒前
水之冬发布了新的文献求助10
11秒前
852应助孙小雨采纳,获得10
11秒前
WizBLue完成签到,获得积分10
11秒前
11秒前
12秒前
热心的善愁完成签到,获得积分10
13秒前
13秒前
姜夔完成签到,获得积分10
13秒前
SciGPT应助云朵采纳,获得10
14秒前
小满完成签到,获得积分10
14秒前
Hello应助糕米采纳,获得10
14秒前
蒋若风发布了新的文献求助10
14秒前
CCC发布了新的文献求助50
15秒前
15秒前
15秒前
17秒前
无医发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255