脱氢
丙烷
火用
材料科学
氢
可用能
热力学
太阳能
核工程
化学工程
热能储存
工艺工程
废物管理
化学
有机化学
催化作用
电气工程
工程类
物理
作者
Rongjie He,Yipu Wang,Hongsheng Wang,Sean-Thomas B. Lundin,Bingzheng Wang,Hui Kong,Xiaofei Lü,Jian Wang,Wenjia Li
标识
DOI:10.1016/j.applthermaleng.2021.116952
摘要
Solar thermochemical conversion is an effective method for solar energy storage, and propane dehydrogenation is one popular technology to generate propylene and hydrogen, while the high temperature required in the reaction limits its efficiency and utilization. In this research, a solar–driven hydrogen permeation membrane reactor system for propane dehydrogenation is proposed for efficiently generating pure hydrogen and propylene in a mild temperature range, which can decrease the heat loss and increase the conversion rate, thereby converting low–grade solar thermal energy into high–grade chemical energy. Using the method of numerical simulation, the thermodynamic, kinetic, and environmental performances of the system are analyzed at different temperatures (250–500 °C) and H2 permeate pressures (10–5–10–2 bar). The C3H8 conversion rate, C3H6 selectivity, and C3H6 yield can achieve 99.2%, 99.1%, and 98.3% at 400 °C, 10–5 bar with the assistance of hydrogen separation. The first–law thermodynamic efficiency, solar–to–fuel efficiency, and exergy efficiency of the system are calculated to be 93.1%, 33.6%, and 73.4% (400 °C, 10–4 bar), respectively. The annual standard coal savings and carbon dioxide reduction rates are calculated to be 279.8 kg/(m2·year) and 685.5 kg/(m2·year) (400 °C, 10–5 bar). This study demonstrates the feasibility of a solar collector integrated with a membrane reactor for efficient solar energy storage via C3H8 dehydrogenation and provides guidance for further experimental research.
科研通智能强力驱动
Strongly Powered by AbleSci AI