已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvoone发布了新的文献求助10
1秒前
科研小天才完成签到,获得积分10
2秒前
5秒前
8秒前
负责如冰完成签到,获得积分10
9秒前
lzx发布了新的文献求助10
9秒前
10秒前
10秒前
14秒前
白金之星完成签到 ,获得积分10
15秒前
16秒前
17秒前
南墙杀手完成签到 ,获得积分10
17秒前
CodeCraft应助Yvoone采纳,获得10
18秒前
科研通AI6应助Namj采纳,获得10
19秒前
嘟嘟嘟嘟发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
22秒前
Drwenlu完成签到,获得积分10
23秒前
24秒前
25秒前
精明的月亮完成签到 ,获得积分10
26秒前
迷路幻柏完成签到 ,获得积分10
26秒前
优美紫槐应助marcg4采纳,获得10
27秒前
28秒前
29秒前
jawa完成签到 ,获得积分10
29秒前
Yvoone完成签到,获得积分10
34秒前
cc发布了新的文献求助10
35秒前
斯文败类应助LQX2141采纳,获得10
35秒前
36秒前
卡卡罗特完成签到 ,获得积分10
37秒前
40秒前
40秒前
大个应助dara采纳,获得10
41秒前
42秒前
43秒前
微笑的依凝完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838060
捐赠科研通 4668727
什么是DOI,文献DOI怎么找? 2538015
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470804