Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地质学 哲学 地震学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:162: 107996-107996 被引量:145
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吧啦呼发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
小程同学发布了新的文献求助10
3秒前
3秒前
3秒前
疯狂的翠梅完成签到,获得积分10
4秒前
4秒前
香蕉君达完成签到,获得积分10
5秒前
ni完成签到,获得积分10
5秒前
ruby发布了新的文献求助10
6秒前
可爱的函函应助量子星尘采纳,获得10
7秒前
zz发布了新的文献求助30
7秒前
科研小李发布了新的文献求助10
7秒前
7秒前
Michelangelo_微风完成签到,获得积分10
8秒前
小罗同学完成签到,获得积分10
8秒前
鑫鑫发布了新的文献求助10
8秒前
樱桃小丸子完成签到,获得积分10
9秒前
9秒前
ff发布了新的文献求助30
9秒前
blah完成签到,获得积分10
9秒前
CodeCraft应助lingyu采纳,获得10
9秒前
9秒前
lilil发布了新的文献求助10
9秒前
9秒前
10秒前
Doctor_mao完成签到,获得积分10
10秒前
11秒前
酵母君完成签到,获得积分20
13秒前
天天快乐应助量子星尘采纳,获得10
13秒前
莫西发布了新的文献求助10
14秒前
阮大帅气发布了新的文献求助10
14秒前
科研茶发布了新的文献求助10
14秒前
寒冷天亦发布了新的文献求助30
15秒前
15秒前
zz关闭了zz文献求助
15秒前
陈晨发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344