Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地质学 哲学 地震学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GQ完成签到 ,获得积分20
1秒前
火星上的穆完成签到,获得积分10
2秒前
传奇3应助冷傲火龙果采纳,获得10
2秒前
贾茗宇完成签到,获得积分10
2秒前
bian发布了新的文献求助10
3秒前
3秒前
Picopy完成签到,获得积分10
3秒前
科研通AI5应助jerryang采纳,获得10
3秒前
华仔应助生动十八采纳,获得10
4秒前
4秒前
小杭76应助简单如容采纳,获得10
4秒前
5秒前
liangzai发布了新的文献求助10
5秒前
5秒前
Akim应助珍珍采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
FashionBoy应助任性醉山采纳,获得10
6秒前
6秒前
134345发布了新的文献求助10
7秒前
科研通AI5应助山水之乐采纳,获得10
7秒前
LPH发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
9秒前
xx发布了新的文献求助10
9秒前
cherish发布了新的文献求助10
12秒前
13秒前
久久丫完成签到 ,获得积分10
13秒前
13秒前
14秒前
外外完成签到,获得积分10
14秒前
14秒前
die发布了新的文献求助10
14秒前
15秒前
15秒前
ccalvintan发布了新的文献求助10
16秒前
孤独大娘发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
贾茗宇发布了新的文献求助10
16秒前
健康的妙菱完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655