Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
oc666888完成签到,获得积分10
1秒前
舒服的又菱完成签到,获得积分20
1秒前
而语完成签到,获得积分10
2秒前
不安忆寒发布了新的文献求助10
3秒前
爱吃秋香鸡的向日葵完成签到,获得积分10
3秒前
Yada完成签到,获得积分10
4秒前
层次感发布了新的文献求助10
4秒前
林狗发布了新的文献求助10
4秒前
科研通AI2S应助大胆的觅松采纳,获得10
5秒前
友好的亦巧完成签到,获得积分10
5秒前
can发布了新的文献求助10
6秒前
香蕉不呐呐完成签到,获得积分10
6秒前
Anna完成签到,获得积分10
6秒前
搜集达人应助ALITTLE采纳,获得10
7秒前
Yada发布了新的文献求助10
7秒前
科研通AI2S应助wuya采纳,获得10
7秒前
7秒前
10秒前
李爱国应助原子采纳,获得10
11秒前
12秒前
标致的夏天完成签到 ,获得积分20
12秒前
香蕉梨愁完成签到,获得积分10
13秒前
天天快乐应助骆風采纳,获得10
13秒前
14秒前
Mr发布了新的文献求助10
14秒前
15秒前
周灏烜完成签到,获得积分10
15秒前
16秒前
大圣发布了新的文献求助10
20秒前
千xi发布了新的文献求助30
20秒前
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
乐空思应助ernest采纳,获得10
23秒前
阿巴阿巴完成签到 ,获得积分20
24秒前
24秒前
复杂的凌柏完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851