Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的银耳汤完成签到,获得积分10
刚刚
共享精神应助Jason615采纳,获得10
刚刚
hhhg发布了新的文献求助100
刚刚
姜姜完成签到,获得积分10
刚刚
嗯嗯嗯完成签到,获得积分10
刚刚
小七完成签到,获得积分10
1秒前
外向的冷雪完成签到,获得积分10
1秒前
zhou发布了新的文献求助10
1秒前
秀丽雁风完成签到,获得积分10
2秒前
chiweiyoung完成签到,获得积分10
2秒前
驰骋完成签到,获得积分10
2秒前
caisongliang发布了新的文献求助10
2秒前
xing完成签到,获得积分10
3秒前
烟雨夕阳完成签到,获得积分10
4秒前
4秒前
lyqs215完成签到,获得积分10
4秒前
4秒前
呆萌惜梦完成签到 ,获得积分10
4秒前
4秒前
心易完成签到,获得积分10
4秒前
萝卜发布了新的文献求助10
4秒前
11发布了新的文献求助10
5秒前
柚柚子完成签到,获得积分10
5秒前
yaoyinlin完成签到,获得积分20
5秒前
7秒前
lwydxb12138完成签到,获得积分10
8秒前
高小明发布了新的文献求助10
8秒前
choup53发布了新的文献求助10
8秒前
在这无人的城堡肆无忌惮的奔跑完成签到,获得积分10
9秒前
YY完成签到,获得积分10
9秒前
9秒前
yaoyinlin发布了新的文献求助10
9秒前
佳佳完成签到,获得积分10
10秒前
热水泡jio发布了新的文献求助10
10秒前
笙箫剑客发布了新的文献求助10
10秒前
阔达的凡儿完成签到,获得积分10
10秒前
11秒前
xzDoctor完成签到,获得积分10
11秒前
李锦诺完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793