亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地质学 哲学 地震学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:145
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到,获得积分10
5秒前
17秒前
路漫漫发布了新的文献求助10
24秒前
27秒前
wwf发布了新的文献求助10
45秒前
1分钟前
YW发布了新的文献求助10
1分钟前
YW完成签到,获得积分10
2分钟前
12138完成签到 ,获得积分10
2分钟前
CC完成签到,获得积分10
2分钟前
wxyinhefeng完成签到 ,获得积分10
3分钟前
3分钟前
iii完成签到 ,获得积分10
3分钟前
天天快乐应助科研通管家采纳,获得10
4分钟前
4分钟前
路漫漫完成签到,获得积分20
5分钟前
路漫漫发布了新的文献求助10
5分钟前
科研通AI2S应助路漫漫采纳,获得10
5分钟前
5分钟前
熊仔一百完成签到 ,获得积分10
5分钟前
HLT完成签到 ,获得积分10
5分钟前
zzuzll完成签到,获得积分10
6分钟前
DoggyBadiou发布了新的文献求助10
6分钟前
7分钟前
完美世界应助DoggyBadiou采纳,获得10
7分钟前
芊瑶发布了新的文献求助10
7分钟前
共享精神应助菩提本无树采纳,获得10
8分钟前
8分钟前
jyy发布了新的文献求助200
8分钟前
赘婿应助怕黑凝天采纳,获得30
8分钟前
NexusExplorer应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
怕黑凝天发布了新的文献求助30
9分钟前
9分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167178
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921848
捐赠科研通 2478428
什么是DOI,文献DOI怎么找? 1320299
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438