Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助七yy采纳,获得10
刚刚
无私大白发布了新的文献求助10
1秒前
yyy完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
平常天宇完成签到,获得积分20
1秒前
Steve完成签到 ,获得积分10
2秒前
fufu发布了新的文献求助10
2秒前
xixi发布了新的文献求助30
4秒前
4秒前
yyy完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
wkyt完成签到 ,获得积分10
9秒前
核桃发布了新的文献求助10
9秒前
10秒前
酷波er应助xiaokezhang采纳,获得10
10秒前
科研小能手完成签到,获得积分10
11秒前
11秒前
武武发布了新的文献求助10
11秒前
Owen应助lulufighting采纳,获得10
12秒前
上官若男应助肖鹏采纳,获得10
12秒前
丘比特应助谨慎的凝丝采纳,获得10
12秒前
Party发布了新的文献求助10
13秒前
14秒前
赘婿应助平常天宇采纳,获得30
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
苗条念云发布了新的文献求助10
15秒前
16秒前
七yy发布了新的文献求助10
17秒前
双硫仑完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223