Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助三三采纳,获得10
刚刚
顺利又菱发布了新的文献求助10
刚刚
1秒前
雨中雨翼发布了新的文献求助10
1秒前
良良丸发布了新的文献求助10
2秒前
2秒前
学术小白完成签到,获得积分20
2秒前
搜集达人应助宁静致远采纳,获得10
4秒前
4秒前
4秒前
王旺完成签到,获得积分10
5秒前
jkhjkhj发布了新的文献求助10
5秒前
努力学习的阿文完成签到 ,获得积分10
5秒前
xiongwenlei发布了新的文献求助10
6秒前
whatever应助清晨仪仪采纳,获得20
6秒前
6秒前
ajiang完成签到,获得积分10
7秒前
pppsci完成签到,获得积分10
8秒前
专注的问寒应助墨菲采纳,获得20
10秒前
11秒前
11秒前
慕青应助猛犸象冲冲冲采纳,获得10
12秒前
Akim应助王凡渡采纳,获得10
13秒前
999z完成签到,获得积分10
13秒前
David完成签到,获得积分10
13秒前
刘辞忧完成签到,获得积分10
13秒前
13秒前
自然画笔关注了科研通微信公众号
13秒前
13秒前
14秒前
ding应助研友采纳,获得10
14秒前
15秒前
15秒前
余喆完成签到,获得积分10
16秒前
Sandy11完成签到,获得积分10
16秒前
李健应助木小叶采纳,获得10
16秒前
17秒前
李爱国应助刘66666采纳,获得10
17秒前
连衣裙完成签到,获得积分10
17秒前
难过的谷芹应助南笙几梦采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478