亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地质学 哲学 地震学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜心椰奶莓莓完成签到 ,获得积分10
5秒前
1分钟前
1分钟前
王思蒙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
MiaMia应助科研通管家采纳,获得10
1分钟前
小火种儿完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
淡定自中发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
helloragdoll发布了新的文献求助10
3分钟前
3分钟前
helloragdoll完成签到,获得积分10
4分钟前
无聊的老姆完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
MiaMia应助科研通管家采纳,获得10
5分钟前
MiaMia应助科研通管家采纳,获得10
5分钟前
5分钟前
Ccccn完成签到,获得积分10
5分钟前
李铛铛发布了新的文献求助10
5分钟前
histamin完成签到,获得积分10
5分钟前
李铛铛完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Rn完成签到 ,获得积分0
6分钟前
6分钟前
achulw完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450949