Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

卷积神经网络 计算机科学 人工智能 深度学习 特征提取 模式识别(心理学) 特征(语言学) 断层(地质) 语言学 地震学 地质学 哲学
作者
Junchuan Shi,Dikang Peng,Zhongxiao Peng,Ziyang Zhang,Kai Goebel,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:162: 107996-107996 被引量:195
标识
DOI:10.1016/j.ymssp.2021.107996
摘要

Gearbox fault diagnosis is expected to significantly improve the reliability, safety and efficiency of power transmission systems. However, planetary gearbox fault diagnosis remains a challenge due to complex responses caused by multiple planetary gears. Model-based gearbox fault diagnosis techniques extract hand-crafted features from sensor data based on underlying physics and statistical analysis, which are not effective in extracting spatial and temporal features automatically. While deep learning methods such as convolutional neural network (CNN) enable automatic feature extraction from multiple sensor sources, they are not capable of extracting spatial and temporal features simultaneously without losing critical feature information. To address this issue, we introduce a novel deep neural network based on bidirectional-convolutional long short-term memory (BiConvLSTM) networks to determine the type, location, and direction of planetary gearbox faults by extracting spatial and temporal features from both vibration and rotational speed measurements automatically and simultaneously. In particular, a CNN determines spatial correlations between two measurements within one time step automatically by combining signals collected from three accelerometers and one tachometer. Long short-term memory (LSTM) networks identify temporal dependencies between two adjacent time steps. By replacing input-to-state and state-to-state operations in the LSTM cell with convolutional operations, the BiConvLSTM can learn spatial correlations and temporal dependencies without losing critical features. Experimental results have shown that the BiConvLSTM network can detect the type, location, and direction of gearbox faults with higher accuracy than conventional deep learning approaches such as CNN, LSTM, and CNN-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shadow完成签到,获得积分10
刚刚
在水一方应助属下存在感采纳,获得10
刚刚
明亮夏旋完成签到,获得积分10
1秒前
1秒前
msw发布了新的文献求助10
1秒前
Betty发布了新的文献求助10
2秒前
残剑月发布了新的文献求助30
2秒前
lj完成签到,获得积分10
3秒前
松尐发布了新的文献求助10
3秒前
烂漫铃铛完成签到,获得积分10
3秒前
猪猪hero应助沉静白翠采纳,获得10
3秒前
viho发布了新的文献求助10
4秒前
花根发布了新的文献求助10
4秒前
有什么大不了的呢完成签到,获得积分10
4秒前
sober发布了新的文献求助20
5秒前
缓慢的秋莲完成签到 ,获得积分10
5秒前
0222完成签到,获得积分20
5秒前
雨辰完成签到 ,获得积分10
5秒前
NexusExplorer应助科研狗采纳,获得10
6秒前
思源应助典雅的迎波采纳,获得10
6秒前
下文献完成签到,获得积分10
7秒前
clyde凌丫完成签到 ,获得积分10
7秒前
碧蓝的乐荷完成签到,获得积分20
8秒前
科研通AI6应助zjx采纳,获得10
8秒前
青青发布了新的文献求助10
8秒前
zhabgyyy完成签到,获得积分10
8秒前
8秒前
8秒前
陈BB完成签到,获得积分10
8秒前
丘比特应助清秋夜露白采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
科研小白完成签到,获得积分10
10秒前
松尐完成签到,获得积分10
10秒前
seasound完成签到,获得积分10
10秒前
小满发布了新的文献求助10
11秒前
11秒前
flsqw发布了新的文献求助10
11秒前
白鹿完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836